The Brunn-Minkowski-Lusternik inequality, and other geometric and functional inequalities

Bernard Maurey

Séminaire Bourbaki (2003-2004)

  • Volume: 46, page 95-114
  • ISSN: 0303-1179

Abstract

top
The theory of convex bodies has begun by the end of the 19th century with the Brunn inequality, later generalized as Brunn-Minkowski-Lusternik inequality, that applies also to non convex sets. This subject has had for a long time contacts with isoperimetric problems and inequalities in Analysis such as Sobolev inequalities. We shall deal with some more recent aspects of geometric inequalities; some of them are related to the mass transportation technique, in particular the “Brenier map”

How to cite

top

Maurey, Bernard. "Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles." Séminaire Bourbaki 46 (2003-2004): 95-114. <http://eudml.org/doc/252148>.

@article{Maurey2003-2004,
abstract = {La théorie des corps convexes a commencé à la fin du xixe siècle avec l’inégalité de Brunn, généralisée ensuite sous la forme de l’inégalité de Brunn-Minkowski-Lusternik, qui s’applique à des ensembles non convexes. Ce thème a depuis longtemps des contacts avec les problèmes isopérimétriques et avec des inégalités d’Analyse telle que les plongements de Sobolev. On développera quelques aspects plus récents des inégalités géométriques, dont certains sont liés à la technique du transport de mesure, notamment le transport dit “de Brenier”.},
author = {Maurey, Bernard},
journal = {Séminaire Bourbaki},
keywords = {Brunn-Minkowski inequality; Prékopa-Leindler inequality; Brascamp-Lieb inequality; isoperimetric inequality; Sobolev inequality; log-concave function; log-concave measure; convex body; transportation of mass; Brenier map; gaussian measure; deviation inequality; complex interpolation},
language = {fre},
pages = {95-114},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles},
url = {http://eudml.org/doc/252148},
volume = {46},
year = {2003-2004},
}

TY - JOUR
AU - Maurey, Bernard
TI - Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles
JO - Séminaire Bourbaki
PY - 2003-2004
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 46
SP - 95
EP - 114
AB - La théorie des corps convexes a commencé à la fin du xixe siècle avec l’inégalité de Brunn, généralisée ensuite sous la forme de l’inégalité de Brunn-Minkowski-Lusternik, qui s’applique à des ensembles non convexes. Ce thème a depuis longtemps des contacts avec les problèmes isopérimétriques et avec des inégalités d’Analyse telle que les plongements de Sobolev. On développera quelques aspects plus récents des inégalités géométriques, dont certains sont liés à la technique du transport de mesure, notamment le transport dit “de Brenier”.
LA - fre
KW - Brunn-Minkowski inequality; Prékopa-Leindler inequality; Brascamp-Lieb inequality; isoperimetric inequality; Sobolev inequality; log-concave function; log-concave measure; convex body; transportation of mass; Brenier map; gaussian measure; deviation inequality; complex interpolation
UR - http://eudml.org/doc/252148
ER -

References

top
  1. [And] T.W. Anderson. The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc., 6 :170–176, 1955. Zbl0066.37402MR69229
  2. [ABBN] S. Artstein, K. Ball, F. Barthe, and A. Naor. Solution of Shannon’s problem on the monotonicity of entropy. J. Amer. Math. Soc., 17 :975–982, 2004. Zbl1062.94006MR2083473
  3. [Ba1] K. Ball. Cube slicing in n . Proc. Amer. Math. Soc., 97 :465–473, 1986. Zbl0601.52005MR840631
  4. [Ba2] K. Ball. Volumes of sections of cubes and related problems. In Geometric aspects of functional analysis (1987-88), volume 1376 of Lect. Notes in Math., pages 251–260. Springer. Zbl0674.46008MR1008726
  5. [Ba3] K. Ball. Volume ratios and a reverse isoperimetric inequality. J. London Math. Soc. (2), 44 :351–359, 1991. Zbl0694.46010MR1136445
  6. [Ba4] K. Ball. Convex geometry and functional analysis. In Handbook of the Geometry of Banach spaces, volume 1, pages 161–194. North Holland, 2001. Zbl1017.46004MR1863692
  7. [BBN] K. Ball, F. Barthe, and A. Naor. Entropy jumps in the presence of a spectral gap. Duke Math. J., 119 :41–63, 2003. Zbl1036.94003MR1991646
  8. [Bar] F. Barthe. On a reverse form of the Brascamp-Lieb inequality. Invent. Math., 134 :335–361, 1998. Zbl0901.26010MR1650312
  9. [BaC] F. Barthe and D. Cordero-Erausquin. Inverse Brascamp-Lieb inequalities along the Heat equation. In Geometric Aspects of Functional Analysis, Israel Seminar 2002-2003, volume 1850 of Lect. Notes in Math., pages 65–71. Springer, 2004. Zbl1086.26010MR2087151
  10. [Ber] B. Berndtsson. Prékopa’s theorem and Kiselman’s minimum principle for plurisubharmonic functions. Math. Ann., 312 :785–792, 1998. Zbl0938.32021MR1660227
  11. [Bob] S.G. Bobkov. An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probab., 25 :206–214, 1997. Zbl0883.60031MR1428506
  12. [BoL] S.G. Bobkov and M. Ledoux. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal., 10 :1028–1052, 2000. Zbl0969.26019MR1800062
  13. [Bo1] C. Borell. The Brunn-Minkowski inequality in Gauss space. Invent. Math., 30 :207–216, 1975. Zbl0292.60004MR399402
  14. [Bo2] C. Borell. The Ehrhard inequality. C. R. Acad. Sci. Paris Sér. I Math., 337 :663–666, 2003. Zbl1031.60013MR2030108
  15. [BrL] H.J. Brascamp and E.H. Lieb. Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Adv. in Math., 20 :151–173, 1976. Zbl0339.26020MR412366
  16. [Bre] Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math., 44 :375–417, 1991. Zbl0738.46011MR1100809
  17. [Ca1] L.A. Caffarelli. The regularity of mappings with a convex potential. J. Amer. Math. Soc., 5 :99–104, 1992. Zbl0753.35031MR1124980
  18. [Ca2] L.A. Caffarelli. Monotonicity properties of optimal transportation and the FKG and related inequalities. Comm. Math. Phys., 214 :547–563, 2000. Erratum, ibid. 225 (2002), p. 449–450. Zbl0978.60107MR1800860
  19. [CHL] M. Capitaine, E.P. Hsu, and M. Ledoux. Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces. Electron. Comm. Probab., 2 :71–81, 1997. Zbl0890.60045MR1484557
  20. [Co1] D. Cordero-Erausquin. Some applications of mass transport to Gaussian-type inequalities. Arch. Rational Mech. Anal., 161 :257–269, 2002. Zbl0998.60080MR1894593
  21. [Co2] D. Cordero-Erausquin. Santaló’s inequality on n by complex interpolation. C. R. Acad. Sci. Paris Sér. I Math., 334 :767–772, 2002. Zbl1002.31003MR1905037
  22. [CFM] D. Cordero-Erausquin, M. Fradelizi, and B. Maurey. The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. J. Funct. Anal., 214 :410–427, 2004. Zbl1073.60042MR2083308
  23. [CMS] D. Cordero-Erausquin, R. McCann, and M. Schmuckenschläger. A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math., 146 :219–257, 2001. Zbl1026.58018MR1865396
  24. [CNV] D. Cordero-Erausquin, B. Nazaret, and C. Villani. A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. in Math., 182 :307–332, 2004. Zbl1048.26010MR2032031
  25. [DaG] S. Das Gupta. Brunn-Minkowski inequality and its aftermath. J. Multivariate Anal., 10 :296–318, 1980. Zbl0467.26008MR588074
  26. [Ehr] A. Ehrhard. Symétrisation dans l’espace de Gauss. Math. Scand., 53 :281–301, 1983. Zbl0542.60003MR745081
  27. [Gar] R.J. Gardner. The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. (N.S.), 39 :355–405, 2002. Zbl1019.26008MR1898210
  28. [HaO] H. Hadwiger and D. Ohmann. Brunn-Minkowskischer Satz und Isoperimetrie. Math. Z., 66 :1–8, 1956. Zbl0071.38001MR82697
  29. [Ha1] G. Hargé. A particular case of correlation inequality for the Gaussian measure. Ann. Probab., 27 :1939–1951, 1999. Zbl0962.28013MR1742895
  30. [Ha2] G. Hargé. Inequalities for the Gaussian measure and an application to Wiener space. C. R. Acad. Sci. Paris Sér. I Math., 333 :791–794, 2001. Zbl0992.60025MR1868955
  31. [HeM] R. Henstock and A.M. Macbeath. On the measure of sum-sets. I. The theorems of Brunn, Minkowski, and Lusternik. Proc. London Math. Soc. (3), 3 :182–194, 1953. Zbl0052.18302MR56669
  32. [Kan] M. Kanter. Unimodality and dominance for symmetric random vectors. Trans. Amer. Math. Soc., 229 :65–85, 1977. Zbl0379.60015MR445580
  33. [Kno] H. Knothe. Contributions to the theory of convex bodies. Michigan Math. J., 4 :39–52, 1957. Zbl0077.35803MR83759
  34. [Lat] R. Latała. A note on the Ehrhard inequality. Studia Math., 118 :169–174, 1996. Zbl0847.60012MR1389763
  35. [LaO] R. Latała and K. Oleszkiewicz. Gaussian measures of dilations of convex symmetric sets. Ann. Probab., 27 :1922–1938, 1999. Zbl0966.60037MR1742894
  36. [Led] M. Ledoux. The concentration of measure phenomenon. American Mathematical Society, 2001. Zbl0995.60002MR1849347
  37. [Lei] L. Leindler. On a certain converse of Hölder’s inequality. Acta Sci. Math. (Szeged), 33 :217–223, 1972. Zbl0245.26011MR2199372
  38. [Lie] E.H. Lieb. Gaussian kernels have only Gaussian maximizers. Invent. Math., 102 :179–208, 1990. Zbl0726.42005MR1069246
  39. [Lus] L. Lusternik. Die Brunn-Minkowskische Ungleichung für beliebige messbare Mengen. Dokl. Akad. Nauk SSSR, (3) :55–58, 1935. Zbl0012.27203JFM61.0760.03
  40. [MC1] R.J. McCann. Existence and uniqueness of monotone measure-preserving maps. Duke Math. J., 80 :309–323, 1995. Zbl0873.28009MR1369395
  41. [MC2] R.J. McCann. Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal., 11 :589–608, 2001. Zbl1011.58009MR1844080
  42. [MeP] M. Meyer and A. Pajor. Sections of the unit ball of n p . J. Funct. Anal., 80 :109–123, 1988. Zbl0667.46004MR960226
  43. [Mon] G. Monge. Mémoire sur la théorie des déblais et des remblais. In Histoire de l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, pages 666–704. 1781. 
  44. [Pis] G. Pisier. The volume of convex bodies and Banach space geometry, volume 94 of Cambridge Tracts in Mathematics. Cambridge University Press, 1989. Zbl0698.46008MR1036275
  45. [Pit] L.D. Pitt. A Gaussian correlation inequality for symmetric convex sets. Ann. Probab., 5 :470–474, 1977. Zbl0359.60018MR448705
  46. [Pre] A. Prékopa. On logarithmic concave measures and functions. Acta Sci. Math. (Szeged), 34 :335–343, 1973. Zbl0264.90038MR404557
  47. [Sim] C.G. Simader. Essential self-adjointness of Schrödinger operators bounded from below. Math. Z., 159 :47–50, 1978. Zbl0409.35026MR470456
  48. [SuT] V.N. Sudakov and B.S. Tsirel’son. Extremal properties of half-spaces for spherically invariant measures. J. Soviet Math., 9 :9–18, 1978. traduit de Zap. Nauch. Sem. L.O.M.I. 41 (1974), p. 14-24. Zbl0395.28007MR365680
  49. [Vil] C. Villani. Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, 2003. Zbl1106.90001MR1964483

Citations in EuDML Documents

top
  1. Cédric Villani, Transport optimal et courbure de Ricci
  2. Cédric Villani, Transport optimal et courbure de Ricci
  3. Ivan Gentil, From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality
  4. Dario Cordero-Erausquin, Robert J. McCann, Michael Schmuckenschläger, Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport
  5. Dario Cordero-Erausquin, Quelques exemples d'application du transport de mesure en géométrie euclidienne et riemannienne

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.