Equiconvergence for Laguerre function series
Studia Mathematica (1996)
- Volume: 118, Issue: 3, page 285-300
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topStempak, Krzysztof. "Equiconvergence for Laguerre function series." Studia Mathematica 118.3 (1996): 285-300. <http://eudml.org/doc/216279>.
@article{Stempak1996,
abstract = {We prove an equiconvergence theorem for Laguerre expansions with partial sums related to partial sums of the (non-modified) Hankel transform. Combined with an equiconvergence theorem recently proved by Colzani, Crespi, Travaglini and Vignati this gives, via the Carleson-Hunt theorem, a.e. convergence results for partial sums of Laguerre function expansions.},
author = {Stempak, Krzysztof},
journal = {Studia Mathematica},
keywords = {equiconvergence; Laguerre series; Hankel transform; equiconvergence theorem; Laguerre expansions},
language = {eng},
number = {3},
pages = {285-300},
title = {Equiconvergence for Laguerre function series},
url = {http://eudml.org/doc/216279},
volume = {118},
year = {1996},
}
TY - JOUR
AU - Stempak, Krzysztof
TI - Equiconvergence for Laguerre function series
JO - Studia Mathematica
PY - 1996
VL - 118
IS - 3
SP - 285
EP - 300
AB - We prove an equiconvergence theorem for Laguerre expansions with partial sums related to partial sums of the (non-modified) Hankel transform. Combined with an equiconvergence theorem recently proved by Colzani, Crespi, Travaglini and Vignati this gives, via the Carleson-Hunt theorem, a.e. convergence results for partial sums of Laguerre function expansions.
LA - eng
KW - equiconvergence; Laguerre series; Hankel transform; equiconvergence theorem; Laguerre expansions
UR - http://eudml.org/doc/216279
ER -
References
top- [CCTV] L. Colzani, A. Crespi, G. Travaglini and M. Vignati, Equiconvergence theorems for Fourier-Bessel expansions with applications to the harmonic analysis of radial functions in euclidean and noneuclidean spaces, Trans. Amer. Math. Soc. 338 (1993), 43-55. Zbl0785.42006
- [Ma] C. Markett, Mean Cesàro summability of Laguerre expansions and norm estimates with shifted parameter, Anal. Math. 8 (1982), 19-37. Zbl0515.42023
- [M1] B. Muckenhoupt, Mean convergence of Hermite and Laguerre series. II, Trans. Amer. Math. Soc. 147 (1970), 433-460.
- [M2] B. Muckenhoupt, Equiconvergence and almost everywhere convergence of Hermite and Laguerre series, SIAM J. Math. Anal. 1 (1970), 295-321. Zbl0201.08501
- [St1] K. Stempak, On connections between Hankel, Laguerre and Heisenberg multipliers, J. London Math. Soc. 51 (1995), 286-298. Zbl0824.42004
- [St2] K. Stempak, Transplanting maximal inequalities between Laguerre and Hankel multipliers, Monatsh. Math., to appear. Zbl0866.42006
- [Sz] G. Szegö, Orthogonal Polynomials, Colloq. Publ. 23, Amer. Math. Soc., New York, 1939.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.