Local Toeplitz operators based on wavelets: phase space patterns for rough wavelets
Studia Mathematica (1996)
- Volume: 119, Issue: 1, page 37-64
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topNowak, Krzysztof. "Local Toeplitz operators based on wavelets: phase space patterns for rough wavelets." Studia Mathematica 119.1 (1996): 37-64. <http://eudml.org/doc/216285>.
@article{Nowak1996,
abstract = {We consider two standard group representations: one acting on functions by translations and dilations, the other by translations and modulations, and we study local Toeplitz operators based on them. Local Toeplitz operators are the averages of projection-valued functions $g ↦ P_\{g,ϕ\}$, where for a fixed function ϕ, $P_\{g,ϕ\}$ denotes the one-dimensional orthogonal projection on the function $U_gϕ$, U is a group representation and g is an element of the group. They are defined as integrals $ʃ_W P_\{g,ϕ\} dg$, where W is an open, relatively compact subset of a group. Our main result is a characterization of function spaces corresponding to local Toeplitz operators with pth power summable eigenvalues, 0 < p ≤ ∞.},
author = {Nowak, Krzysztof},
journal = {Studia Mathematica},
keywords = {singular values; time-frequency localization; rough wavelets; group representations; dilations; translations; modulations; local Toeplitz operator; left invariant measure; th power summable eigenvalues; Schatten ideal; integral lattice; Fourier transform; inverse Fourier transform},
language = {eng},
number = {1},
pages = {37-64},
title = {Local Toeplitz operators based on wavelets: phase space patterns for rough wavelets},
url = {http://eudml.org/doc/216285},
volume = {119},
year = {1996},
}
TY - JOUR
AU - Nowak, Krzysztof
TI - Local Toeplitz operators based on wavelets: phase space patterns for rough wavelets
JO - Studia Mathematica
PY - 1996
VL - 119
IS - 1
SP - 37
EP - 64
AB - We consider two standard group representations: one acting on functions by translations and dilations, the other by translations and modulations, and we study local Toeplitz operators based on them. Local Toeplitz operators are the averages of projection-valued functions $g ↦ P_{g,ϕ}$, where for a fixed function ϕ, $P_{g,ϕ}$ denotes the one-dimensional orthogonal projection on the function $U_gϕ$, U is a group representation and g is an element of the group. They are defined as integrals $ʃ_W P_{g,ϕ} dg$, where W is an open, relatively compact subset of a group. Our main result is a characterization of function spaces corresponding to local Toeplitz operators with pth power summable eigenvalues, 0 < p ≤ ∞.
LA - eng
KW - singular values; time-frequency localization; rough wavelets; group representations; dilations; translations; modulations; local Toeplitz operator; left invariant measure; th power summable eigenvalues; Schatten ideal; integral lattice; Fourier transform; inverse Fourier transform
UR - http://eudml.org/doc/216285
ER -
References
top- [D] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 6, SIAM, Philadelphia, 1992.
- [F1] H. G. Feichtinger, Wiener amalgams over Euclidean spaces and some of their applications, in: Lecture Notes in Pure and Appl. Math. 136, K. Jarosz (ed.), Dekker, New York, 1992, 123-137.
- [F2] H. G. Feichtinger, Generalized amalgams with applications to Fourier transform, Canad. J. Math. 42 (1990), 395-409.
- [FG] H. G. Feichtinger and K. Gröchenig, Gabor wavelets and the Heisenberg group, in: Wavelets - A Tutorial in Theory and Applications, C. K. Chui (ed.), Academic Press, Boston, 1992, 359-397. Zbl0849.43003
- [Fo] G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, Princeton, N.J., 1989.
- [FJW] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Providence, R.I., 1991.
- [JP] S. Janson and J. Peetre, Paracommutators - boundedness and Schatten-von Neumann properties, Trans. Amer. Math. Soc. 305 (1988), 467-504. Zbl0644.47046
- [N1] K. Nowak, On Calderón-Toeplitz operators, Monatsh. Math. 116 (1993), 49-72. Zbl0795.47016
- [N2] K. Nowak, Some eigenvalue estimates for wavelet related Toeplitz operators, Colloq. Math. 65 (1993), 149-156. Zbl0836.47019
- [N3] K. Nowak, Singular value estimates for certain convolution-product operators, J. Fourier Anal. Appl. 1 (3) (1995), 297-310. Zbl0894.45002
- [Pe] L. Peng, Paracommutators of Schatten-von Neumann class , 0 < p < 1, Math. Scand. 61 (1987), 68-92.
- [PRW] L. Peng, R. Rochberg and Z. Wu, Orthogonal polynomials and middle Hankel operators, Studia Math. 102 (1992), 57-75. Zbl0809.30008
- [R1] R. Rochberg, Toeplitz and Hankel operators, wavelets, NWO sequences, and almost diagonalization of operators, in: Proc. Sympos. Pure Math. 51, W. B. Arveson and R. G. Douglas (eds.), Amer. Math. Soc., Providence, 1990, 425-444.
- [R2] R. Rochberg, A correspondence principle for Toeplitz and Calderón-Toeplitz operators, in: Israel Math. Conf. Proc. 5, M. Cwikel et al. (eds.), Bar-Ilan Univ., Ramat Gan, 1992, 229-243. Zbl0865.47016
- [R3] R. Rochberg, Eigenvalue estimates for Calderón-Toeplitz operators, in: Lecture Notes in Pure and Appl. Math. 136, K. Jarosz (ed.), Dekker, New York, 1992, 345-357.
- [R4] R. Rochberg, The use of decomposition theorems in the study of operators, in: Wavelets: Mathematics and Applications, J. J. Benedetto and M. Frazier (eds.), CRC Press, Boca Raton, 1994, 547-570. Zbl0901.47016
- [S] B. Simon, Trace Ideals and Their Applications, Cambridge Univ. Press, London, 1979. Zbl0423.47001
- [Sl] D. Slepian, Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev. 25 (1983), 379-393. Zbl0571.94004
- [Z] K. Zhu, Operator Theory in Function Spaces, Dekker, New York, 1990. Zbl0706.47019
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.