A characterization of coherent states from varying Planck's constant
In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.
We consider two standard group representations: one acting on functions by translations and dilations, the other by translations and modulations, and we study local Toeplitz operators based on them. Local Toeplitz operators are the averages of projection-valued functions , where for a fixed function ϕ, denotes the one-dimensional orthogonal projection on the function , U is a group representation and g is an element of the group. They are defined as integrals , where W is an open, relatively...