Existence, uniqueness and ergodicity for the stochastic quantization equation

Dariusz Gątarek; Beniamin Gołdys

Studia Mathematica (1996)

  • Volume: 119, Issue: 2, page 179-193
  • ISSN: 0039-3223

Abstract

top
Existence, uniqueness and ergodicity of weak solutions to the equation of stochastic quantization in finite volume is obtained as a simple consequence of the Girsanov theorem.

How to cite

top

Gątarek, Dariusz, and Gołdys, Beniamin. "Existence, uniqueness and ergodicity for the stochastic quantization equation." Studia Mathematica 119.2 (1996): 179-193. <http://eudml.org/doc/216293>.

@article{Gątarek1996,
abstract = {Existence, uniqueness and ergodicity of weak solutions to the equation of stochastic quantization in finite volume is obtained as a simple consequence of the Girsanov theorem.},
author = {Gątarek, Dariusz, Gołdys, Beniamin},
journal = {Studia Mathematica},
keywords = {Wick powers; Nelson estimates; stochastic quantization; stationary measure; ergodicity; uniqueness and ergodicity of weak solutions; Girsanov theorem},
language = {eng},
number = {2},
pages = {179-193},
title = {Existence, uniqueness and ergodicity for the stochastic quantization equation},
url = {http://eudml.org/doc/216293},
volume = {119},
year = {1996},
}

TY - JOUR
AU - Gątarek, Dariusz
AU - Gołdys, Beniamin
TI - Existence, uniqueness and ergodicity for the stochastic quantization equation
JO - Studia Mathematica
PY - 1996
VL - 119
IS - 2
SP - 179
EP - 193
AB - Existence, uniqueness and ergodicity of weak solutions to the equation of stochastic quantization in finite volume is obtained as a simple consequence of the Girsanov theorem.
LA - eng
KW - Wick powers; Nelson estimates; stochastic quantization; stationary measure; ergodicity; uniqueness and ergodicity of weak solutions; Girsanov theorem
UR - http://eudml.org/doc/216293
ER -

References

top
  1. [AR] S. Albeverio and M. Röckner, Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms, Probab. Theory Related Fields 89 (1991), 347-386. Zbl0725.60055
  2. [BCM] V. S. Borkar, R. T. Chari and S. K. Mitter, Stochastic quantization of field theory in finite and infinite volume, J. Funct. Anal. 81 (1988), 184-206. Zbl0657.60084
  3. [DZ] G. DaPrato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992. 
  4. [H] R. Z. Hasminskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Aalpen an den Rijn, 1980. 
  5. [HK] Y. Z. Hu and G. Kallianpur, Singular infinite-dimensional SDE and stochastic quantization of P ( ϕ ) 2 field, submitted. 
  6. [IW] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981. 
  7. [JM] G. Jona-Lasinio and P. K. Mitter, On the stochastic quantization of field theory, Comm. Math. Phys. 101 (1985), 409-436. Zbl0588.60054
  8. [LS] R. S. Liptser and A. N. Shiryaev, Statistics of Random Processes, Springer, New York, 1977. 
  9. [MT] S. P. Meyn and R. L. Tweedie, Stability of Markovian processes II: continuous-time processes and sampled chains, Adv. Appl. Probab. 25 (1993), 487-517. Zbl0781.60052
  10. [PW] G. Parisi and Y. S. Wu, Perturbation theory without gauge fixing, Sci. Sinica 24 (1981), 483-496. 
  11. [Si] B. Simon, The P ( ϕ ) 2 Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, 1974. 
  12. [St] Ł. Stettner, Remarks on ergodic conditions for Markov processes on Polish spaces, Bull. Polish Acad. Sci. Math. 42 (1994), 103-114. Zbl0815.60072
  13. [W] L. Wu, Feynman-Kac semigroups, ground state diffusions and large deviations, J. Funct. Anal. 123 (1994), 202-231. Zbl0798.60067

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.