# Existence, uniqueness and ergodicity for the stochastic quantization equation

Dariusz Gątarek; Beniamin Gołdys

Studia Mathematica (1996)

- Volume: 119, Issue: 2, page 179-193
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topGątarek, Dariusz, and Gołdys, Beniamin. "Existence, uniqueness and ergodicity for the stochastic quantization equation." Studia Mathematica 119.2 (1996): 179-193. <http://eudml.org/doc/216293>.

@article{Gątarek1996,

abstract = {Existence, uniqueness and ergodicity of weak solutions to the equation of stochastic quantization in finite volume is obtained as a simple consequence of the Girsanov theorem.},

author = {Gątarek, Dariusz, Gołdys, Beniamin},

journal = {Studia Mathematica},

keywords = {Wick powers; Nelson estimates; stochastic quantization; stationary measure; ergodicity; uniqueness and ergodicity of weak solutions; Girsanov theorem},

language = {eng},

number = {2},

pages = {179-193},

title = {Existence, uniqueness and ergodicity for the stochastic quantization equation},

url = {http://eudml.org/doc/216293},

volume = {119},

year = {1996},

}

TY - JOUR

AU - Gątarek, Dariusz

AU - Gołdys, Beniamin

TI - Existence, uniqueness and ergodicity for the stochastic quantization equation

JO - Studia Mathematica

PY - 1996

VL - 119

IS - 2

SP - 179

EP - 193

AB - Existence, uniqueness and ergodicity of weak solutions to the equation of stochastic quantization in finite volume is obtained as a simple consequence of the Girsanov theorem.

LA - eng

KW - Wick powers; Nelson estimates; stochastic quantization; stationary measure; ergodicity; uniqueness and ergodicity of weak solutions; Girsanov theorem

UR - http://eudml.org/doc/216293

ER -

## References

top- [AR] S. Albeverio and M. Röckner, Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms, Probab. Theory Related Fields 89 (1991), 347-386. Zbl0725.60055
- [BCM] V. S. Borkar, R. T. Chari and S. K. Mitter, Stochastic quantization of field theory in finite and infinite volume, J. Funct. Anal. 81 (1988), 184-206. Zbl0657.60084
- [DZ] G. DaPrato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992.
- [H] R. Z. Hasminskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Aalpen an den Rijn, 1980.
- [HK] Y. Z. Hu and G. Kallianpur, Singular infinite-dimensional SDE and stochastic quantization of $P{\left(\varphi \right)}_{2}$ field, submitted.
- [IW] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981.
- [JM] G. Jona-Lasinio and P. K. Mitter, On the stochastic quantization of field theory, Comm. Math. Phys. 101 (1985), 409-436. Zbl0588.60054
- [LS] R. S. Liptser and A. N. Shiryaev, Statistics of Random Processes, Springer, New York, 1977.
- [MT] S. P. Meyn and R. L. Tweedie, Stability of Markovian processes II: continuous-time processes and sampled chains, Adv. Appl. Probab. 25 (1993), 487-517. Zbl0781.60052
- [PW] G. Parisi and Y. S. Wu, Perturbation theory without gauge fixing, Sci. Sinica 24 (1981), 483-496.
- [Si] B. Simon, The $P{\left(\varphi \right)}_{2}$ Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, 1974.
- [St] Ł. Stettner, Remarks on ergodic conditions for Markov processes on Polish spaces, Bull. Polish Acad. Sci. Math. 42 (1994), 103-114. Zbl0815.60072
- [W] L. Wu, Feynman-Kac semigroups, ground state diffusions and large deviations, J. Funct. Anal. 123 (1994), 202-231. Zbl0798.60067

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.