Invariant measures for nonlinear SPDE's: uniqueness and stability
Archivum Mathematicum (1998)
- Volume: 034, Issue: 1, page 153-172
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMaslowski, Bohdan, and Seidler, Jan. "Invariant measures for nonlinear SPDE's: uniqueness and stability." Archivum Mathematicum 034.1 (1998): 153-172. <http://eudml.org/doc/248193>.
@article{Maslowski1998,
abstract = {The paper presents a review of some recent results on uniqueness of invariant measures for stochastic differential equations in infinite-dimensional state spaces, with particular attention paid to stochastic partial differential equations. Related results on asymptotic behaviour of solutions like ergodic theorems and convergence of probability laws of solutions in strong and weak topologies are also reviewed.},
author = {Maslowski, Bohdan, Seidler, Jan},
journal = {Archivum Mathematicum},
keywords = {Stochastic evolution equations; invariant measures; ergodic theorems; stability; stochastic evolution equations; invariant measures; ergodic systems; stability},
language = {eng},
number = {1},
pages = {153-172},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Invariant measures for nonlinear SPDE's: uniqueness and stability},
url = {http://eudml.org/doc/248193},
volume = {034},
year = {1998},
}
TY - JOUR
AU - Maslowski, Bohdan
AU - Seidler, Jan
TI - Invariant measures for nonlinear SPDE's: uniqueness and stability
JO - Archivum Mathematicum
PY - 1998
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 034
IS - 1
SP - 153
EP - 172
AB - The paper presents a review of some recent results on uniqueness of invariant measures for stochastic differential equations in infinite-dimensional state spaces, with particular attention paid to stochastic partial differential equations. Related results on asymptotic behaviour of solutions like ergodic theorems and convergence of probability laws of solutions in strong and weak topologies are also reviewed.
LA - eng
KW - Stochastic evolution equations; invariant measures; ergodic theorems; stability; stochastic evolution equations; invariant measures; ergodic systems; stability
UR - http://eudml.org/doc/248193
ER -
References
top- S. Albeverio V. Bogachev M. Röckner, On uniqueness of invariant measures for finite and infinite dimensional diffusions, Universität Bielefeld, SFB 343, Preprint 97–057
- S. Albeverio, Yu. G. Kondratiev M. Röckner, Ergodicity of -semigroups and extremality of Gibbs states, J. Funct. Anal. 144 (1997), 394–423 (1997) MR1432591
- S. Albeverio, Yu. G. Kondratiev M. Röckner, Ergodicity for the stochastic dynamics of quasi-invariant measures with applications to Gibbs states, J. Funct. Anal. 149 (1997), 415–469 (1997) MR1472365
- A. Bensoussan A. Răşcanu, Large time behaviour for parabolic stochastic variational inequalities, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 42 (1996), 149–173 (1996) MR1608249
- V. I. Bogachev N. Krylov M. Röckner, Regularity of invariant measures: the case of non-constant diffusion part, J. Funct. Anal. 138 (1996), 223–242 (1996) MR1391637
- V. I. Bogachev M. Röckner, Regularity of invariant measures in finite and infinite dimensional spaces and applications, J. Funct. Anal. 133 (1995), 168–223 (1995) MR1351647
- V. Bogachev M. Röckner T. S. Zhang, Existence and uniqueness of invariant measures: an approach via sectorial forms, Universität Bielefeld, SFB 343, Preprint 97–072
- A. Chojnowska-Michalik B. Goldys, Existence, uniqueness and invariant measures for stochastic semilinear equations in Hilbert spaces, Probab. Theory Related Fields 102 (1995), 331-356 (1995) MR1339737
- I. D. Chueshov T. V. Girya, Inertial manifolds and forms for semilinear parabolic equations subjected to additive noise, Lett. Math. Phys. 34 (1995), 69–76 (1995) MR1334036
- G. Da Prato A. Debussche, Stochastic Cahn-Hilliard equation, Nonlinear Anal. 26 (1996), 241–263 (1996) MR1359472
- G. Da Prato K. D. Elworthy J. Zabczyk, Strong Feller property for stochastic semilinear equations, Stochastic Anal. Appl. 13 (1995), 35–45 (1995) MR1313205
- G. Da Prato D. Gątarek, Stochastic Burgers equation with correlated noise, Stochastics Stochastics Rep. 52 (1995), 29–41 (1995) MR1380259
- G. Da Prato D. Gątarek J. Zabczyk, Invariant measures for semilinear stochastic equations, Stochastic Anal. Appl. 10 (1992), 387–408 (1992) MR1178482
- G. Da Prato D. Nualart J. Zabczyk, Strong Feller property for infinite-dimensional stochastic equations, Scuola Normale Superiore Pisa, Preprints di Matematica n. 33/1994 (1994)
- G. Da Prato J. Zabczyk, Smoothing properties of transition semigroups in Hilbert spaces, Stochastics Stochastics Rep. 35 (1991), 63–77 (1991) MR1110991
- G. Da Prato J. Zabczyk, Non-explosion, boundedness and ergodicity for stochastic semilinear equations, J. Differential Equations 98 (1992), 181–195 (1992) MR1168978
- G. Da Prato J. Zabczyk, On invariant measure for semilinear equations with dissipative nonlinearities, Stochastic partial differential equations and their applications (Charlotte, 1991), 38–42, Lecture Notes in Control Inform. Sci. 176, Springer 1992 (1991) MR1176769
- G. Da Prato J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge 1992 (1992) MR1207136
- G. Da Prato J. Zabczyk, Convergence to equilibrium for classical and quantum spin systems, Probab. Theory Related Fields 103 (1995), 529–552 (1995) MR1360204
- G. Da Prato J. Zabczyk, Ergodicity for infinite dimensional systems, Cambridge University Press, Cambridge 1996 (1996) MR1417491
- J. L. Doob, Asymptotic properties of Markoff transition probabilities, Trans. Amer. Math. Soc. 63 (1948), 393–421 (1948) Zbl0041.45406MR0025097
- M. Duflo D. Revuz, Propriétés asymptotiques de probabilités de transition des processus de Markov récurrents, Ann. Inst. H. Poincaré Probab. Statist. 5 (1969), 233–244 (1969) MR0273680
- B. Ferrario, Ergodic results for stochastic Navier-Stokes equation, Stochastics Stochastics Rep. 60 (1997), 271–288 (1997) Zbl0882.60059MR1467721
- F. Flandoli B. Maslowski, Ergodicity of the 2–D Navier-Stokes equation under random perturbations, Comm. Math. Phys. 171 (1995), 119–141 (1995) MR1346374
- M. I. Freidlin, Random perturbations of reaction-diffusion equations: the quasi-deterministic approximation, Trans. Amer. Math. Soc. 305 (1988), 665–697 (1988) Zbl0673.35049MR0924775
- M. Fuhrman, Smoothing properties of nonlinear stochastic equations in Hilbert spaces, NODEA Nonlinear Differential Equations Appl. 3 (1996), 445–464 (1996) Zbl0866.60050MR1418590
- D. Gątarek B. Gołdys, Existence, uniqueness and ergodicity for the stochastic quantization equation, Studia Math. 119 (1996), 179–193 (1996) MR1391475
- D. Gątarek B. Goldys, On invariant measures for diffusions on Banach spaces, Potential Anal. 7 (1997), 539–553 (1997) MR1467205
- T. V. Girya, On stabilization of solutions to nonlinear stochastic parabolic equations, Ukrain. Mat. Zh. 41 (1989), 1630–1636 (in Russian) (1989) MR1042959
- T. V. Girya I. D. Khueshov, Inertial manifolds and stationary measures for dissipative dynamical systems with a random perturbation, Mat. Sb. 186 (1995), 29–46 (in Russian) (1995) MR1641664
- Hu Xuanda, Boundedness and invariant measures of semilinear stochastic evolution equations, Nanjing Daxue Xuebao Shuxue Bannian Kan 4 (1987), 1–14 (1987) Zbl0652.60065MR0916950
- A. Ichikawa, Semilinear stochastic evolution equations: Boundedness, stability and invariant measures, Stochastics 12 (1984), 1–39 (1984) Zbl0538.60068MR0738933
- Ya. Sh. Il’yasov A. I. Komech, The Girsanov theorem and ergodic properties of statistical solutions to nonlinear parabolic equations, Trudy Sem. Petrovskogo 12 (1987), 88–117 (in Russian) (1987) MR0933054
- S. Jacquot, Strong ergodicity results on Wiener space, Stochastics Stochastics Rep. 51 (1994), 133–154 (1994) Zbl0851.60059MR1380766
- S. Jacquot, Simulated annealing for stochastic semilinear equations in Hilbert spaces, Stochastic Process. Appl. 64 (1996), 73–91 (1996) MR1419493
- S. Jacquot G. Royer, Ergodicité d’une classe d’équations aux dérivées partielles stochastiques, C. R. Acad. Sci. Paris Sér. Math. 320 (1995), 231–236 (1995) MR1320362
- R. Z. Khas’minskiĭ, Ergodic properties of recurrent diffusion processes and stabilization of solutions to the Cauchy problem for parabolic equations, Teor. Veroyatnost. i Primenen. 5 (1960), 196–214 (in Russian) (1960) MR0133871
- R. Z. Khas’minskiĭ, Stability of systems of differential equations under random perturbations of their parameters, Nauka, Moskva 1969 (in Russian); English translation: Stochastic stability of differential equations, Sijthoff & Noordhoff, Alphen aan den Rijn 1980 (1969)
- Yu. G. Kondratiev S. Roelly H. Zessin, Stochastic dynamics for an infinite system of random closed strings: A Gibbsian point of view, Stochastic Process. Appl. 61 (1996), 223–248 (1996) MR1386174
- S. M. Kozlov, Some problems concerning stochastic partial differential equations, Trudy Sem. Petrovskogo 4 (1978), 147–172 (in Russian) (1978) MR0524530
- H.-H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math. 463, Berlin 1975 (1975) Zbl0306.28010MR0461643
- G. Leha G. Ritter, Lyapunov-type conditions for stationary distributions of diffusion processes on Hilbert spaces, Stochastics Stochastics Rep. 48 (1994), 195–225 (1994) MR1782748
- G. Leha G. Ritter, Stationary distributions of diffusion processes with singular drift on Hilbert spaces, in preparation
- R. Manthey B. Maslowski, Qualitative behaviour of solutions of stochastic reaction-diffusion equations, Stochastic Process. Appl. 43 (1992), 265–289 (1992) MR1191151
- R. Marcus, Parabolic Itô equations, Trans. Amer. Math. Soc. 198 (1974), 177–190 (198) MR0346909
- R. Marcus, Parabolic Itô equations with monotone nonlinearities, J. Funct. Anal. 29 (1978), 275–286 (1978) Zbl0397.47034MR0512245
- R. Marcus, Stochastic diffusion on an unbounded domain, Pacific J. Math. 84 (1979), 143–153 (1979) Zbl0423.60056MR0559632
- G. Maruyama H. Tanaka, Ergodic property of -dimensional recurrent Markov processes, Mem. Fac. Sci. Kyushu Univ. Ser. A 13 (1959), 157–172 (1959) MR0112175
- B. Maslowski, Uniqueness and stability of invariant measures for stochastic differential equations in Hilbert spaces, Stochastics Stochastics Rep. 28 (1989), 85–114 (1989) Zbl0683.60037MR1018545
- B. Maslowski, Strong Feller property for semilinear stochastic evolution equations and applications, Stochastic systems and optimization (Warsaw, 1988), 210–224, Lecture Notes in Control Inform. Sci. 136, Springer-Verlag, Berlin 1989 (1988) MR1180781
- B. Maslowski, On ergodic behaviour of solutions to systems of stochastic reaction-diffusion equations with correlated noise, Stochastic processes and related topics (Georgenthal, 1990), 93–102, Akademie-Verlag, Berlin 1991 (1990) MR1127885
- B. Maslowski, On probability distributions of solutions of semilinear stochastic evolution equations, Stochastics Stochastics Rep. 45 (1993), 17–44 (1993) Zbl0792.60058MR1277360
- B. Maslowski, Stability of semilinear equations with boundary and pointwise noise, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 55–93 (1995) Zbl0830.60056MR1315350
- B. Maslowski, Asymptotic properties of stochastic equations with boundary and pointwise noise, Stochastic processes and related topics (Siegmundsburg, 1994), 67–76, Gordon and Breach, Amsterdam 1996 (1994) MR1393497
- B. Maslowski J. Seidler, Ergodic properties of recurrent solutions of stochastic evolution equations, Osaka J. Math. 31 (1994), 965–1003 (1994) MR1315015
- B. Maslowski J. Seidler, Probabilistic approach to the strong Feller property, in preparation
- B. Maslowski I. Simão, Asymptotic properties of stochastic semilinear equations by method of lower measures, Colloq. Math. 79 (1997), 147–171 (1997) MR1425551
- S. Mück, Semilinear stochastic equations for symmetric diffusions, Stochastics Stochastics Rep., to appear (1998) (1998) MR1613264
- C. Mueller, Coupling and invariant measures for the heat equation with noise, Ann. Probab. 21 (1993), 2189–2199 (1993) Zbl0795.60056MR1245306
- S. Peszat J. Zabczyk, Strong Feller property and irreducibility for diffusions on Hilbert spaces, Ann. Probab. 23 (1995), 157–172 (1995) MR1330765
- J. Seidler, Ergodic behaviour of stochastic parabolic equations, Czechoslovak Math. J. 47 (122) (1997), 277–316 (1997) Zbl0935.60041MR1452421
- R. Sowers, Large deviations for the invariant measure of a reaction-diffusion equation with non-Gaussian perturbations, Probab. Theory Related Fields 92 (1994), 393–421 (1994) MR1165518
- Ł. Stettner, Remarks on ergodic conditions for Markov processes on Polish spaces, Bull. Polish Acad. Sci. Math. 42 (1994), 103–114 (1994) Zbl0815.60072MR1810695
- D. W. Stroock, Logarithmic Sobolev inequality for Gibbs states, Dirichlet forms (Varenna, 1992), 194–228, Lecture Notes in Math. 1563, Springer-Verlag, Berlin 1993 (1992) MR1292280
- M. J. Vishik A. V. Fursikov, Mathematical problems of stochastic hydromechanics, Kluwer Academic Publishers, Dordrecht 1988 (1988)
- J. Zabczyk, Structural properties and limit behaviour of linear stochastic systems in Hilbert spaces, Mathematical control theory, 591–609, Banach Center Publications Vol. 14, PWN, Warsaw 1985 (1985) Zbl0573.93076MR0851253
- B. Zegarlinski, Ergodicity of Markov semigroups, Stochastic partial differential equations (Edinburgh, 1994), 312–337, Cambridge University Press, Cambridge 1995 (1994) MR1352750
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.