On differentiation of integrals with respect to bases of convex sets.
Studia Mathematica (1996)
- Volume: 119, Issue: 2, page 99-108
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs Math., Birkhäuser, Boston, 1984. Zbl0545.49018
- [2] M. de Guzmán, Differentiation of Integrals in , Lecture Notes in Math. 481, Springer, 1975.
- [3] M. de Guzmán, Real Variable Methods in Fourier Analysis, North-Holland Math. Stud. 46, Amsterdam, 1981. Zbl0449.42001
- [4] V. I. Kolyada, Rearrangements of functions and embedding theorems, Uspekhi Mat. Nauk 49 (5) (1989), 61-95 (in Russian).
- [5] V. G. Maz'ya and T. O. Shaposhnikova, Multipliers in Spaces of Differentiable Functions, Izdat. Leningrad. Univ., Leningrad, 1986 (in Russian).
- [6] O. Nikodym, Sur la mesure des ensembles plans dont tous les points sont rectilinéairement accessibles, Fund. Math. 10 (1927), 116-168. Zbl53.0176.02
- [7] S. M. Nikol'skiĭ, Approximation of Functions of Several Variables and Embedding Theorems, Izdat. Nauka, Moscow, 1969 (in Russian).
- [8] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. Zbl0207.13501
- [9] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge University Press, Cambridge, 1968. Zbl0157.38204