A complete characterization of R-sets in the theory of differentiation of integrals
Let be the family of open rectangles in the plane ℝ² with a side of angle s to the x-axis. We say that a set S of directions is an R-set if there exists a function f ∈ L¹(ℝ²) such that the basis differentiates the integral of f if s ∉ S, and almost everywhere if s ∈ S. If the condition holds on a set of positive measure (instead of a.e.) we say that S is a WR-set. It is proved that S is an R-set (resp. a WR-set) if and only if it is a (resp. a ).