Regularity properties of singular integral operators
Studia Mathematica (1996)
- Volume: 119, Issue: 3, page 199-217
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topYoussfi, Abdellah. "Regularity properties of singular integral operators." Studia Mathematica 119.3 (1996): 199-217. <http://eudml.org/doc/216296>.
@article{Youssfi1996,
abstract = {For s>0, we consider bounded linear operators from $D(ℝ^n)$ into $D^\{\prime \}(ℝ^n)$ whose kernels K satisfy the conditions $|∂^\{γ\}_\{x\}K(x,y)| ≤ C_\{γ\}|x-y|^\{-n+s-|γ|\}$ for x≠y, |γ|≤ [s]+1, $|∇_\{y\} ∂^\{γ\}_\{x\} K(x,y)| ≤ C_\{γ\}|x-y|^\{-n+s-|γ|-1\}$ for |γ|=[s], x≠y. We establish a new criterion for the boundedness of these operators from $L^2(ℝ^n)$ into the homogeneous Sobolev space $Ḣ^s(ℝ^n)$. This is an extension of the well-known T(1) Theorem due to David and Journé. Our arguments make use of the function T(1) and the BMO-Sobolev space. We give some applications to the Besov and Triebel-Lizorkin spaces as well as some other potential spaces.},
author = {Youssfi, Abdellah},
journal = {Studia Mathematica},
keywords = {Besov spaces; regularity; singular integral operators; Theorem; BMO-Sobolev space; Triebel-Lizorkin spaces},
language = {eng},
number = {3},
pages = {199-217},
title = {Regularity properties of singular integral operators},
url = {http://eudml.org/doc/216296},
volume = {119},
year = {1996},
}
TY - JOUR
AU - Youssfi, Abdellah
TI - Regularity properties of singular integral operators
JO - Studia Mathematica
PY - 1996
VL - 119
IS - 3
SP - 199
EP - 217
AB - For s>0, we consider bounded linear operators from $D(ℝ^n)$ into $D^{\prime }(ℝ^n)$ whose kernels K satisfy the conditions $|∂^{γ}_{x}K(x,y)| ≤ C_{γ}|x-y|^{-n+s-|γ|}$ for x≠y, |γ|≤ [s]+1, $|∇_{y} ∂^{γ}_{x} K(x,y)| ≤ C_{γ}|x-y|^{-n+s-|γ|-1}$ for |γ|=[s], x≠y. We establish a new criterion for the boundedness of these operators from $L^2(ℝ^n)$ into the homogeneous Sobolev space $Ḣ^s(ℝ^n)$. This is an extension of the well-known T(1) Theorem due to David and Journé. Our arguments make use of the function T(1) and the BMO-Sobolev space. We give some applications to the Besov and Triebel-Lizorkin spaces as well as some other potential spaces.
LA - eng
KW - Besov spaces; regularity; singular integral operators; Theorem; BMO-Sobolev space; Triebel-Lizorkin spaces
UR - http://eudml.org/doc/216296
ER -
References
top- [1] G. Bourdaud, Analyse fonctionnelle dans l'espace Euclidien, Publ. Math. Paris VII 23, 1987. Zbl0627.46048
- [2] G. Bourdaud, Réalisation des espaces de Besov homogènes, Ark. Mat. 26 (1988), 41-54.
- [3] G. Bourdaud, Une algèbre maximale d'opérateurs pseudo-différentiels, Comm. Partial Differential Equations 13 (1988), 1059-1083. Zbl0659.35115
- [4] A. P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092-1099. Zbl0151.16901
- [5] R. Coifman et Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978). Zbl0483.35082
- [6] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397. Zbl0567.47025
- [7] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799. Zbl0551.46018
- [8] M. Frazier and B. Jawerth, A discrete transform and applications to distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
- [9] M. Frazier, R. Torres and G. Weiss, The boundedness of Calderón-Zygmund operators on the spaces , Rev. Math. Iberoamericana 4 (1988), 41-72. Zbl0694.42023
- [10] L. Hörmander, Pseudo-differential operators of type 1,1, Comm. Partial Differential Equations 13 (1988), 1085-1111. Zbl0667.35078
- [11] L. Hörmander, Continuity of pseudo-differential operators of type 1,1, ibid. 14 (1989), 231-243. Zbl0688.35107
- [12] M. Meyer, Une classe d'espace fonctionnels de type BMO. Application aux intégrales singulières, Ark. Mat. 27 (1989), 305-318. Zbl0698.42007
- [13] Y. Meyer, Régularité des solutions des équations aux dérivées partielles non linéaires, in: Lecture Notes in Math. 842, Springer, 1980, 293-302.
- [14] Y. Meyer, Ondelettes et Opérateurs, I, II, Hermann, 1990. Zbl0694.41037
- [15] L. Päivärinta, Pseudo-differential operators in Hardy-Triebel spaces, Z. Anal. Anwendungen 2 (1983), 235-242. Zbl0544.47046
- [16] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Durham, N.C., 1976. Zbl0356.46038
- [17] T. Runst, Pseudo-differential operators of the “exotic” class in spaces of Besov and Triebel-Lizorkin type, Ann. Global Anal. Geom. 3 (1985), 13-28. Zbl0549.46020
- [18] R. S. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29 (1980), 539-558. Zbl0437.46028
- [19] M. S. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, 1991.
- [20] R. Torres, Continuity properties of pseudodifferential operators of type 1,1, Comm. Partial Differential Equations 15 (1990), 1313-1328. Zbl0737.35170
- [21] H. Triebel, Theory of Function Spaces, Geest & Portig, Leipzig, and Birkhäuser, 1983.
- [22] H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992.
- [23] A. Youssfi, Continuité-Besov des opérateurs définis par des intégrales singulières, Manuscripta Math. 65 (1989), 289-310. Zbl0677.42012
- [24] A. Youssfi, Commutators on Besov spaces and factorization of the paraproduct, Bull. Sci. Math. 119 (1995), 157-186. Zbl0827.46031
- [25] A. Youssfi, Regularity properties of commutators and BMO-Triebel-Lizorkin spaces, Ann. Inst. Fourier (Grenoble) 43 (1995), 795-807. Zbl0827.46030
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.