Regularity properties of commutators and B M O -Triebel-Lizorkin spaces

Abdellah Youssfi

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 3, page 795-807
  • ISSN: 0373-0956

Abstract

top
In this paper we consider the regularity problem for the commutators ( [ b , R k ] ) 1 k n where b is a locally integrable function and ( R j ) 1 j n are the Riesz transforms in the n -dimensional euclidean space n . More precisely, we prove that these commutators ( [ b , R k ] ) 1 k n are bounded from L p into the Besov space B ˙ p s , p for 1 < p < + and 0 < s < 1 if and only if b is in the B M O -Triebel-Lizorkin space F ˙ s , p . The reduction of our result to the case p = 2 gives in particular that the commutators ( [ b , R k ] ) 1 k n are bounded form L 2 into the Sobolev space H ˙ s if and only if b is in the B M O -Sobolev space F ˙ s , 2 .

How to cite

top

Youssfi, Abdellah. "Regularity properties of commutators and $BMO$-Triebel-Lizorkin spaces." Annales de l'institut Fourier 45.3 (1995): 795-807. <http://eudml.org/doc/75138>.

@article{Youssfi1995,
abstract = {In this paper we consider the regularity problem for the commutators $([b,R_k])_\{1\le k\le n\}$ where $b$ is a locally integrable function and $(R_j)_\{1\le j\le n\}$ are the Riesz transforms in the $n$-dimensional euclidean space $\{\Bbb R\}^n$. More precisely, we prove that these commutators $([b,R_k])_\{1\le k\le n\}$ are bounded from $L^p$ into the Besov space $\dot\{B\}_p^\{s,p\}$ for $1&lt; p&lt; +\infty $ and $0&lt; s&lt; 1$ if and only if $b$ is in the $BMO$-Triebel-Lizorkin space $\dot\{F\}_\infty ^\{s,p\}$. The reduction of our result to the case $p=2$ gives in particular that the commutators $([b,R_k])_\{1\le k\le n\}$ are bounded form $L^2$ into the Sobolev space $\dot\{H\}^s$ if and only if $b$ is in the $BMO$-Sobolev space $\dot\{F\}_\infty ^\{s,2\}$.},
author = {Youssfi, Abdellah},
journal = {Annales de l'institut Fourier},
keywords = {regularity; commutators; Riesz transforms; Besov space; BMO-Triebel- Lizorkin space; Sobolov space; BMO-Sobolev space},
language = {eng},
number = {3},
pages = {795-807},
publisher = {Association des Annales de l'Institut Fourier},
title = {Regularity properties of commutators and $BMO$-Triebel-Lizorkin spaces},
url = {http://eudml.org/doc/75138},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Youssfi, Abdellah
TI - Regularity properties of commutators and $BMO$-Triebel-Lizorkin spaces
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 3
SP - 795
EP - 807
AB - In this paper we consider the regularity problem for the commutators $([b,R_k])_{1\le k\le n}$ where $b$ is a locally integrable function and $(R_j)_{1\le j\le n}$ are the Riesz transforms in the $n$-dimensional euclidean space ${\Bbb R}^n$. More precisely, we prove that these commutators $([b,R_k])_{1\le k\le n}$ are bounded from $L^p$ into the Besov space $\dot{B}_p^{s,p}$ for $1&lt; p&lt; +\infty $ and $0&lt; s&lt; 1$ if and only if $b$ is in the $BMO$-Triebel-Lizorkin space $\dot{F}_\infty ^{s,p}$. The reduction of our result to the case $p=2$ gives in particular that the commutators $([b,R_k])_{1\le k\le n}$ are bounded form $L^2$ into the Sobolev space $\dot{H}^s$ if and only if $b$ is in the $BMO$-Sobolev space $\dot{F}_\infty ^{s,2}$.
LA - eng
KW - regularity; commutators; Riesz transforms; Besov space; BMO-Triebel- Lizorkin space; Sobolov space; BMO-Sobolev space
UR - http://eudml.org/doc/75138
ER -

References

top
  1. [1] G. BOURDAUD, Analyse fonctionnelle dans l'espace euclidien, Pub. Math. Paris VII, 23 (1987). Zbl0627.46048
  2. [2] G. BOURDAUD, Réalisations des espaces de Besov homogènes, Arkiv for Math., 26 (1988), 41-54. Zbl0661.46026MR90d:46046
  3. [3] A.P. CALDERÓN, Commutators of singular integral operators, Proc. Nat. Acad. Sci., 53 (1965), 1092-1099. Zbl0151.16901MR31 #1575
  4. [4] R. COIFMAN, P.L. LIONS, Y. MEYER and S. SEMMES, Compensated compactness and Hardy spaces, J. Math Pures et Appl., 72 (1993), 247-286. Zbl0864.42009MR95d:46033
  5. [5] R. COIFMAN, R. ROCHBERG and G. WEISS, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611-635. Zbl0326.32011MR54 #843
  6. [6] M. FRAZIER, and B. JAWERTH, A discrete transform and applications to distribution spaces, J. Funct. Anal., 93 (1990), 34-170. Zbl0716.46031MR92a:46042
  7. [7] Y. MEYER, Ondelettes et opérateurs. Tome II, Hermann, 1990. Zbl0694.41037
  8. [8] M.A.M. MURRAY, Commutateurs with fractional differentiation and BMO-Sobolev spaces, Indiana Univ. Math. J., 34 (1985), 205-215. Zbl0537.46035MR86c:47042
  9. [9] J. PEETRE, New thoughts on Besov spaces, Duke Univ. Math. Series I Durham, North Carolina, 1976. Zbl0356.46038MR57 #1108
  10. [10] E. STEIN and G. WEISS, Introduction to Fourier Analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971. Zbl0232.42007MR46 #4102
  11. [11] R.S. STRICHARTZ, Bounded mean oscillations and Sobolev spaces, Indiana Univ. Math. J., 29 (1980), 539-558. Zbl0437.46028MR82f:46040
  12. [12] H. TRIEBEL, Theory of function spaces (Leipzig 1983). Zbl0546.46028
  13. [13] H. TRIEBEL, Theory of function spaces II, Basel-Boston-Berlin, Birkhäuser, 1992. Zbl0763.46025MR93f:46029
  14. [14] A. YOUSSFI, Localisation des espaces de Lizorkin-Triebel homogènes, Math. Na-chr., 147 (1990), 107-121. Zbl0737.46026MR92j:46059
  15. [15] A. YOUSSFI, Commutators on Besov spaces and factorization of the paraproduct, Bull. Sc. Math., 119 (1995), 157-186. Zbl0827.46031MR96e:46050

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.