Regularity properties of commutators and -Triebel-Lizorkin spaces
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 3, page 795-807
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topYoussfi, Abdellah. "Regularity properties of commutators and $BMO$-Triebel-Lizorkin spaces." Annales de l'institut Fourier 45.3 (1995): 795-807. <http://eudml.org/doc/75138>.
@article{Youssfi1995,
abstract = {In this paper we consider the regularity problem for the commutators $([b,R_k])_\{1\le k\le n\}$ where $b$ is a locally integrable function and $(R_j)_\{1\le j\le n\}$ are the Riesz transforms in the $n$-dimensional euclidean space $\{\Bbb R\}^n$. More precisely, we prove that these commutators $([b,R_k])_\{1\le k\le n\}$ are bounded from $L^p$ into the Besov space $\dot\{B\}_p^\{s,p\}$ for $1< p< +\infty $ and $0< s< 1$ if and only if $b$ is in the $BMO$-Triebel-Lizorkin space $\dot\{F\}_\infty ^\{s,p\}$. The reduction of our result to the case $p=2$ gives in particular that the commutators $([b,R_k])_\{1\le k\le n\}$ are bounded form $L^2$ into the Sobolev space $\dot\{H\}^s$ if and only if $b$ is in the $BMO$-Sobolev space $\dot\{F\}_\infty ^\{s,2\}$.},
author = {Youssfi, Abdellah},
journal = {Annales de l'institut Fourier},
keywords = {regularity; commutators; Riesz transforms; Besov space; BMO-Triebel- Lizorkin space; Sobolov space; BMO-Sobolev space},
language = {eng},
number = {3},
pages = {795-807},
publisher = {Association des Annales de l'Institut Fourier},
title = {Regularity properties of commutators and $BMO$-Triebel-Lizorkin spaces},
url = {http://eudml.org/doc/75138},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Youssfi, Abdellah
TI - Regularity properties of commutators and $BMO$-Triebel-Lizorkin spaces
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 3
SP - 795
EP - 807
AB - In this paper we consider the regularity problem for the commutators $([b,R_k])_{1\le k\le n}$ where $b$ is a locally integrable function and $(R_j)_{1\le j\le n}$ are the Riesz transforms in the $n$-dimensional euclidean space ${\Bbb R}^n$. More precisely, we prove that these commutators $([b,R_k])_{1\le k\le n}$ are bounded from $L^p$ into the Besov space $\dot{B}_p^{s,p}$ for $1< p< +\infty $ and $0< s< 1$ if and only if $b$ is in the $BMO$-Triebel-Lizorkin space $\dot{F}_\infty ^{s,p}$. The reduction of our result to the case $p=2$ gives in particular that the commutators $([b,R_k])_{1\le k\le n}$ are bounded form $L^2$ into the Sobolev space $\dot{H}^s$ if and only if $b$ is in the $BMO$-Sobolev space $\dot{F}_\infty ^{s,2}$.
LA - eng
KW - regularity; commutators; Riesz transforms; Besov space; BMO-Triebel- Lizorkin space; Sobolov space; BMO-Sobolev space
UR - http://eudml.org/doc/75138
ER -
References
top- [1] G. BOURDAUD, Analyse fonctionnelle dans l'espace euclidien, Pub. Math. Paris VII, 23 (1987). Zbl0627.46048
- [2] G. BOURDAUD, Réalisations des espaces de Besov homogènes, Arkiv for Math., 26 (1988), 41-54. Zbl0661.46026MR90d:46046
- [3] A.P. CALDERÓN, Commutators of singular integral operators, Proc. Nat. Acad. Sci., 53 (1965), 1092-1099. Zbl0151.16901MR31 #1575
- [4] R. COIFMAN, P.L. LIONS, Y. MEYER and S. SEMMES, Compensated compactness and Hardy spaces, J. Math Pures et Appl., 72 (1993), 247-286. Zbl0864.42009MR95d:46033
- [5] R. COIFMAN, R. ROCHBERG and G. WEISS, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611-635. Zbl0326.32011MR54 #843
- [6] M. FRAZIER, and B. JAWERTH, A discrete transform and applications to distribution spaces, J. Funct. Anal., 93 (1990), 34-170. Zbl0716.46031MR92a:46042
- [7] Y. MEYER, Ondelettes et opérateurs. Tome II, Hermann, 1990. Zbl0694.41037
- [8] M.A.M. MURRAY, Commutateurs with fractional differentiation and BMO-Sobolev spaces, Indiana Univ. Math. J., 34 (1985), 205-215. Zbl0537.46035MR86c:47042
- [9] J. PEETRE, New thoughts on Besov spaces, Duke Univ. Math. Series I Durham, North Carolina, 1976. Zbl0356.46038MR57 #1108
- [10] E. STEIN and G. WEISS, Introduction to Fourier Analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971. Zbl0232.42007MR46 #4102
- [11] R.S. STRICHARTZ, Bounded mean oscillations and Sobolev spaces, Indiana Univ. Math. J., 29 (1980), 539-558. Zbl0437.46028MR82f:46040
- [12] H. TRIEBEL, Theory of function spaces (Leipzig 1983). Zbl0546.46028
- [13] H. TRIEBEL, Theory of function spaces II, Basel-Boston-Berlin, Birkhäuser, 1992. Zbl0763.46025MR93f:46029
- [14] A. YOUSSFI, Localisation des espaces de Lizorkin-Triebel homogènes, Math. Na-chr., 147 (1990), 107-121. Zbl0737.46026MR92j:46059
- [15] A. YOUSSFI, Commutators on Besov spaces and factorization of the paraproduct, Bull. Sc. Math., 119 (1995), 157-186. Zbl0827.46031MR96e:46050
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.