A note on a formula for the fractional powers of infinitesimal generators of semigroups
Studia Mathematica (1996)
- Volume: 119, Issue: 3, page 247-254
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topMartinez, Celso, and Sanz, Miguel. "A note on a formula for the fractional powers of infinitesimal generators of semigroups." Studia Mathematica 119.3 (1996): 247-254. <http://eudml.org/doc/216298>.
@article{Martinez1996,
abstract = {If -A is the generator of an equibounded $C_0$-semigroup and 0 < Re α < m (m integer), its fractional power $A^α$ can be described in terms of the semigroup, through a formula that is only valid if a certain function $K_\{α,m\}$ is nonzero. This paper is devoted to the study of the zeros of $K_\{α,m\}$.},
author = {Martinez, Celso, Sanz, Miguel},
journal = {Studia Mathematica},
keywords = {generator of an equibounded -semigroup; fractional power},
language = {eng},
number = {3},
pages = {247-254},
title = {A note on a formula for the fractional powers of infinitesimal generators of semigroups},
url = {http://eudml.org/doc/216298},
volume = {119},
year = {1996},
}
TY - JOUR
AU - Martinez, Celso
AU - Sanz, Miguel
TI - A note on a formula for the fractional powers of infinitesimal generators of semigroups
JO - Studia Mathematica
PY - 1996
VL - 119
IS - 3
SP - 247
EP - 254
AB - If -A is the generator of an equibounded $C_0$-semigroup and 0 < Re α < m (m integer), its fractional power $A^α$ can be described in terms of the semigroup, through a formula that is only valid if a certain function $K_{α,m}$ is nonzero. This paper is devoted to the study of the zeros of $K_{α,m}$.
LA - eng
KW - generator of an equibounded -semigroup; fractional power
UR - http://eudml.org/doc/216298
ER -
References
top- [1] A. V. Balakrishnan, Fractional powers of closed operators and semigroups generated by them, Pacific J. Math. 10 (1960), 419-437. Zbl0103.33502
- [2] H. Berens, P. L. Butzer and U. Westphal, Representation of fractional powers of infinitesimal generators of semigroups, Bull. Amer. Math. Soc. 74 (1968), 191-196. Zbl0153.45203
- [3] H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966), 285-346. Zbl0154.16104
- [4] H. Komatsu, Fractional powers of operators, II. Interpolation spaces, ibid. 21 (1967), 89-111. Zbl0168.10702
- [5] H. Komatsu, Fractional powers of operators, III. Negative powers, J. Math. Soc. Japan 21 (1969), 205-220. Zbl0181.41003
- [6] O. E. Landford and W. Robinson, Fractional powers of generators of equicontinuous semigroups and fractional derivatives, J. Austral. Math. Soc. Ser. A 46 (1989), 473-504. Zbl0689.47015
- [7] J. L. Lions et J. Peetre, Sur une classe d'espaces d'interpolation, Publ. Math. Inst. Hautes Etudes Sci. 19 (1964), 5-68.
- [8] C. Martinez and M. Sanz, Fractional powers of non-densely defined operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 18 (1991), 443-454. Zbl0811.47013
- [9] C. Martinez, M. Sanz and L. Marco, Fractional powers of operators, J. Math. Soc. Japan 40 (1988), 331-347. Zbl0628.47006
- [10] J. D. Stafney, Integral representations of fractional powers of infinitesimal generators, Illinois J. Math. 20 (1976), 124-133. Zbl0315.47025
- [11] U. Westphal, An approach to fractional powers of operators via fractional differences, Proc. London Math. Soc. (3) 29 (1974), 557-576. Zbl0294.47030
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.