Fractional powers of non-densely defined operators

Celso Martinez; Miguel Sanz

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1991)

  • Volume: 18, Issue: 3, page 443-454
  • ISSN: 0391-173X

How to cite

top

Martinez, Celso, and Sanz, Miguel. "Fractional powers of non-densely defined operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 18.3 (1991): 443-454. <http://eudml.org/doc/84107>.

@article{Martinez1991,
author = {Martinez, Celso, Sanz, Miguel},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {closed operators; fractional powers of non-densely defined operators in Banach spaces; uniqueness of non-negative -th roots of a non-negative operator; non-negativeness of the inverse and the adjoint operators; Riemann-Liouville operator; Weyl integral operator},
language = {eng},
number = {3},
pages = {443-454},
publisher = {Scuola normale superiore},
title = {Fractional powers of non-densely defined operators},
url = {http://eudml.org/doc/84107},
volume = {18},
year = {1991},
}

TY - JOUR
AU - Martinez, Celso
AU - Sanz, Miguel
TI - Fractional powers of non-densely defined operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1991
PB - Scuola normale superiore
VL - 18
IS - 3
SP - 443
EP - 454
LA - eng
KW - closed operators; fractional powers of non-densely defined operators in Banach spaces; uniqueness of non-negative -th roots of a non-negative operator; non-negativeness of the inverse and the adjoint operators; Riemann-Liouville operator; Weyl integral operator
UR - http://eudml.org/doc/84107
ER -

References

top
  1. [1] A.V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math.10 (1960), 419-437. Zbl0103.33502MR115096
  2. [2] H. Berens - U. Westphal, A Cauchy problem for a generalized wave equation, Acta Sci. Math. Szeged29 (1968), 93-106. Zbl0182.13502MR239462
  3. [3] G. Da Prato - E. Sinestrari, Differential Operators with Non-Dense Domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 No. 2 (1987), 285-344. Zbl0652.34069MR939631
  4. [4] H.O. Fattorini, The Cauchy Problem, Vol. 18 of Encyclopedia of Mathematics and its Applications, Addison-Wesley, Massachusetts, 1983. Zbl1167.34300MR692768
  5. [5] H.W. Hövel - U. Westphal, Fractional powers of closed operators, Studia Math.42 (1972), 177-194. Zbl0207.13303MR303344
  6. [6] T. Kato, Note on fractional powers of linear operators, Proc. Japan Acad.36 (1960), 94-96. Zbl0097.31802MR121666
  7. [7] T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan13 (1961), 246-274. Zbl0113.10005MR138005
  8. [8] H. Komatsu, Fractional powers of operators, Pacific J. Math.19 (1966), 285-346. Zbl0154.16104MR201985
  9. [9] H. Komatsu, Fractional powers of operators, II. Interpolation spaces, Pacific J. Math.21 (1967), 89-111. Zbl0168.10702MR206716
  10. [10] H. Komatsu, Fractional powers of operators, III. Negative powers, J. Math. Soc. Japan21 (1969), 205-220. Zbl0181.41003MR242005
  11. [11] H. Komatsu, Fractional powers of operators, V. Dual operators, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 17 (1970), 373-396. Zbl0208.16302MR271769
  12. [12] M.A. Krasnosel'skii - P.E. Sobolevskii, Fractional powers of operators acting in Banach spaces, Dokl. Akad. Nauk SSSR, 129 (1959), 499-502. Zbl0090.09102MR108733
  13. [13] C. Martinez - M. Sanz - L. Marco, Fractional powers of operators, J. Math. Soc. Japan40 No. 2 (1988), 331-347. Zbl0628.47006MR930604
  14. [14] C. Martinez - M. Sanz - V. Calvo, Fractional powers of non-negative operators in Fréchet spaces, Internat. J. Math. Math. Sci.12 No. 2 (1989), 309-320. Zbl0684.47013MR994914
  15. [15] C. Martinez - M. Sanz, n-th roots of a non-negative operator. Conditions for the uniqueness, Manuscripta Math.64 (1989), 403-417. Zbl0684.47014MR1005244
  16. [16] W. Nollau, Üeber Potenzen von linearen Operatoren in Banachschen Räumen, Acta Sci. Math. Szeged28 (1967), 107-121. Zbl0171.12203MR212590
  17. [17] J. Watanabe, On some properties of fractional powers of linear operators, Proc. Japan Acad, 37 (1961), 273-275. Zbl0109.34002MR140958
  18. [18] U. Westphal, An approach to fractional powers via fractional differences, Proc. London Math. Soc. (3) 29 (1974), 557-576. Zbl0294.47030MR361922
  19. [19] K. Yosida, Fractional powers of infinitesimal generators and the analiticity of the semi-groups generated by them, Proc. Japan Acad.36 (1960), 86-89. Zbl0097.31801MR121665

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.