Fractional powers of non-densely defined operators
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1991)
- Volume: 18, Issue: 3, page 443-454
- ISSN: 0391-173X
Access Full Article
topHow to cite
topMartinez, Celso, and Sanz, Miguel. "Fractional powers of non-densely defined operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 18.3 (1991): 443-454. <http://eudml.org/doc/84107>.
@article{Martinez1991,
author = {Martinez, Celso, Sanz, Miguel},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {closed operators; fractional powers of non-densely defined operators in Banach spaces; uniqueness of non-negative -th roots of a non-negative operator; non-negativeness of the inverse and the adjoint operators; Riemann-Liouville operator; Weyl integral operator},
language = {eng},
number = {3},
pages = {443-454},
publisher = {Scuola normale superiore},
title = {Fractional powers of non-densely defined operators},
url = {http://eudml.org/doc/84107},
volume = {18},
year = {1991},
}
TY - JOUR
AU - Martinez, Celso
AU - Sanz, Miguel
TI - Fractional powers of non-densely defined operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1991
PB - Scuola normale superiore
VL - 18
IS - 3
SP - 443
EP - 454
LA - eng
KW - closed operators; fractional powers of non-densely defined operators in Banach spaces; uniqueness of non-negative -th roots of a non-negative operator; non-negativeness of the inverse and the adjoint operators; Riemann-Liouville operator; Weyl integral operator
UR - http://eudml.org/doc/84107
ER -
References
top- [1] A.V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math.10 (1960), 419-437. Zbl0103.33502MR115096
- [2] H. Berens - U. Westphal, A Cauchy problem for a generalized wave equation, Acta Sci. Math. Szeged29 (1968), 93-106. Zbl0182.13502MR239462
- [3] G. Da Prato - E. Sinestrari, Differential Operators with Non-Dense Domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 No. 2 (1987), 285-344. Zbl0652.34069MR939631
- [4] H.O. Fattorini, The Cauchy Problem, Vol. 18 of Encyclopedia of Mathematics and its Applications, Addison-Wesley, Massachusetts, 1983. Zbl1167.34300MR692768
- [5] H.W. Hövel - U. Westphal, Fractional powers of closed operators, Studia Math.42 (1972), 177-194. Zbl0207.13303MR303344
- [6] T. Kato, Note on fractional powers of linear operators, Proc. Japan Acad.36 (1960), 94-96. Zbl0097.31802MR121666
- [7] T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan13 (1961), 246-274. Zbl0113.10005MR138005
- [8] H. Komatsu, Fractional powers of operators, Pacific J. Math.19 (1966), 285-346. Zbl0154.16104MR201985
- [9] H. Komatsu, Fractional powers of operators, II. Interpolation spaces, Pacific J. Math.21 (1967), 89-111. Zbl0168.10702MR206716
- [10] H. Komatsu, Fractional powers of operators, III. Negative powers, J. Math. Soc. Japan21 (1969), 205-220. Zbl0181.41003MR242005
- [11] H. Komatsu, Fractional powers of operators, V. Dual operators, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 17 (1970), 373-396. Zbl0208.16302MR271769
- [12] M.A. Krasnosel'skii - P.E. Sobolevskii, Fractional powers of operators acting in Banach spaces, Dokl. Akad. Nauk SSSR, 129 (1959), 499-502. Zbl0090.09102MR108733
- [13] C. Martinez - M. Sanz - L. Marco, Fractional powers of operators, J. Math. Soc. Japan40 No. 2 (1988), 331-347. Zbl0628.47006MR930604
- [14] C. Martinez - M. Sanz - V. Calvo, Fractional powers of non-negative operators in Fréchet spaces, Internat. J. Math. Math. Sci.12 No. 2 (1989), 309-320. Zbl0684.47013MR994914
- [15] C. Martinez - M. Sanz, n-th roots of a non-negative operator. Conditions for the uniqueness, Manuscripta Math.64 (1989), 403-417. Zbl0684.47014MR1005244
- [16] W. Nollau, Üeber Potenzen von linearen Operatoren in Banachschen Räumen, Acta Sci. Math. Szeged28 (1967), 107-121. Zbl0171.12203MR212590
- [17] J. Watanabe, On some properties of fractional powers of linear operators, Proc. Japan Acad, 37 (1961), 273-275. Zbl0109.34002MR140958
- [18] U. Westphal, An approach to fractional powers via fractional differences, Proc. London Math. Soc. (3) 29 (1974), 557-576. Zbl0294.47030MR361922
- [19] K. Yosida, Fractional powers of infinitesimal generators and the analiticity of the semi-groups generated by them, Proc. Japan Acad.36 (1960), 86-89. Zbl0097.31801MR121665
Citations in EuDML Documents
top- Celso Martinez, Miguel Sanz, A note on a formula for the fractional powers of infinitesimal generators of semigroups
- Celso Martínez, Miguel Sanz, Spectral mapping theorem for fractional powers in locally convex spaces
- Celso Martínez, Miguel Sanzi, Francisco Periago, Distributional fractional powers of the Laplacean. Riesz potentials
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.