Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals

Bruno Franchi; Francesco Serra Cassano

Studia Mathematica (1996)

  • Volume: 120, Issue: 1, page 1-22
  • ISSN: 0039-3223

Abstract

top
We prove a higher integrability result - similar to Gehring's lemma - for the metric space associated with a family of Lipschitz continuous vector fields by means of sub-unit curves. Applications are given to show the higher integrability of the gradient of minimizers of some noncoercive variational functionals.

How to cite

top

Franchi, Bruno, and Serra Cassano, Francesco. "Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals." Studia Mathematica 120.1 (1996): 1-22. <http://eudml.org/doc/216317>.

@article{Franchi1996,
abstract = {We prove a higher integrability result - similar to Gehring's lemma - for the metric space associated with a family of Lipschitz continuous vector fields by means of sub-unit curves. Applications are given to show the higher integrability of the gradient of minimizers of some noncoercive variational functionals.},
author = {Franchi, Bruno, Serra Cassano, Francesco},
journal = {Studia Mathematica},
keywords = {higher integrability; Gehring's lemma; metric space; family of Lipschitz continuous vector fields; sub-unit curves; gradient; noncoercive variational functionals},
language = {eng},
number = {1},
pages = {1-22},
title = {Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals},
url = {http://eudml.org/doc/216317},
volume = {120},
year = {1996},
}

TY - JOUR
AU - Franchi, Bruno
AU - Serra Cassano, Francesco
TI - Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals
JO - Studia Mathematica
PY - 1996
VL - 120
IS - 1
SP - 1
EP - 22
AB - We prove a higher integrability result - similar to Gehring's lemma - for the metric space associated with a family of Lipschitz continuous vector fields by means of sub-unit curves. Applications are given to show the higher integrability of the gradient of minimizers of some noncoercive variational functionals.
LA - eng
KW - higher integrability; Gehring's lemma; metric space; family of Lipschitz continuous vector fields; sub-unit curves; gradient; noncoercive variational functionals
UR - http://eudml.org/doc/216317
ER -

References

top
  1. [BI] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in n , Ann. Acad. Sci. Fenn. 8 (1983), 257-324. Zbl0548.30016
  2. [C] A. P. Calderón, Inequalities for the maximal function relative to a metric, Studia Math. 57 (1976), 297-306. Zbl0341.44007
  3. [CW] S. Chanillo and R. L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for the Peano maximal function, Amer. J. Math. 107 (1985), 1191-1226. Zbl0575.42026
  4. [CGL] G. Citti, N. Garofalo and E. Lanconelli, Harnack's inequality for a sum of squares plus a potential, ibid. 115 (1993), 699-734. Zbl0795.35018
  5. [CDG] L. Capogna, D. Danielli and N. Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z., to appear. Zbl0893.35023
  6. [DS] G. David and S. Semmes, Strong A weights, Sobolev inequalities and quasiconformal mappings, in: Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math. 122, Dekker, New York, 1990, 101-111. 
  7. [FP] C. Fefferman and D. H. Phong, Subelliptic eigenvalue problems, in: Conference on Harmonic Analysis, Chicago, 1980, W. Beckner et al. (eds), Wadsworth, 1981, 590-606. 
  8. [F1] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), 125-158. Zbl0751.46023
  9. [F2] B. Franchi, Inégalités de Sobolev pour des champs de vecteurs lipschitziens, C. R. Acad. Sci. Paris 311 (1990), 329-332. Zbl0734.46023
  10. [FL] B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 10 (1983), 523-541. Zbl0552.35032
  11. [F2] B. Franchi, C. Gutiérrez and R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), 523-604. Zbl0822.46032
  12. [FLW] B. Franchi, G. Lu and R. L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), 577-604. Zbl0820.46026
  13. [FSC] B. Franchi et F. Serra Cassano, Régularité partielle pour une classe de systèmes elliptiques dégénérés, C. R. Acad. Sci. Paris 316 (1993), 37-40. Zbl0783.35021
  14. [FS] N. Fusco and C. Sbordone, Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions, Comm. Pure Appl. Math. 43 (1990), 673-683. Zbl0727.49021
  15. [Ge] F. W. Gehring, The L p -integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265-277. Zbl0258.30021
  16. [G1] U. Giannazza, Regularity for nonlinear equations involving square Hörmander operators, preprint, 1993. 
  17. [G1] U. Giannazza, Higher integrability for nonlinear quasi-minima of functionals depending on vector fields, Rend. Accad. Naz. Sci. 17 (1993), 209-227. 
  18. [G] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud. 105, Princeton Univ. Press, 1983. Zbl0516.49003
  19. [GG] M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals, Acta Math. 148 (1982), 31-46. Zbl0494.49031
  20. [GM] M. Giaquinta and G. Modica, Regularity results for some class of higher order nonlinear elliptic systems, J. Reine Angew. Math. 311/312 (1979), 145-169. Zbl0409.35015
  21. [GN] N. Garofalo and D. M. Nhieu, Isoperimetric and Sobolev inequalities for vector fields and minimal surfaces, Comm. Pure Appl. Math., to appear. Zbl0880.35032
  22. [GIM] L. Greco, T. Iwaniec and G. Moscariello, Limits of the improved integrability of the volume forms, preprint of Dipartimento di Matematica e Applicazioni di Napoli 36/1993. Zbl0855.42009
  23. [I] T. Iwaniec, L p -theory of quasiregular mappings, in: Quasiconformal Space Mappings, M. Vuorinen (ed.), Lecture Notes in Math. 1508, Springer, 1992, 39-64. Zbl0785.30010
  24. [K] J. Kinnunen, Higher integrability with weights, preprint, 1992. 
  25. [Md] G. Modica, Quasiminimi di alcuni funzionali degeneri, Ann. Mat. Pura Appl. 142 (1985), 121-143. 
  26. [Mo] C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations, Springer, 1966. 
  27. [NSW] A. Nagel, E. M. Stein and S. Wainger, Balls and metrics defined by vector fields I: basic properties, Acta Math. 155 (1985) 103-147. Zbl0578.32044
  28. [S1] C. Sbordone, Some reverse integral inequalities, Atti Accad. Pontaniana 33 (1984), 1-15. 
  29. [S2] C. Sbordone, Quasiminima of degenerate functionals with non polynomial growth, Rend. Sem. Mat. Fis. Univ. Milano 59 (1989), 173-184. Zbl0760.49023
  30. [St1] E. W. Stredulinsky, Higher integrability from reverse Hölder inequalities, Indiana Univ. Math. J. 29 (1980), 407-413. Zbl0442.35064
  31. [St2] E. W. Stredulinsky, Weighted Inequalities and Degenerate Elliptic Partial Differential Equations, Lecture Notes in Math. 1074, Springer, 1984. 
  32. [W] I. Wik, On Muckenhoupt's classes of weight functions, Studia Math. 94 (1989), 245-255. Zbl0686.42012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.