Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients

Bruno Franchi; Ermanno Lanconelli

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1983)

  • Volume: 10, Issue: 4, page 523-541
  • ISSN: 0391-173X

How to cite

top

Franchi, Bruno, and Lanconelli, Ermanno. "Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10.4 (1983): 523-541. <http://eudml.org/doc/83915>.

@article{Franchi1983,
author = {Franchi, Bruno, Lanconelli, Ermanno},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Harnack inequality; Poincaré inequality; Moser technique; De Giorgi theorem; Hölder regularity; weak solutions; degenerate ellipic operator; divergence form},
language = {eng},
number = {4},
pages = {523-541},
publisher = {Scuola normale superiore},
title = {Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients},
url = {http://eudml.org/doc/83915},
volume = {10},
year = {1983},
}

TY - JOUR
AU - Franchi, Bruno
AU - Lanconelli, Ermanno
TI - Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1983
PB - Scuola normale superiore
VL - 10
IS - 4
SP - 523
EP - 541
LA - eng
KW - Harnack inequality; Poincaré inequality; Moser technique; De Giorgi theorem; Hölder regularity; weak solutions; degenerate ellipic operator; divergence form
UR - http://eudml.org/doc/83915
ER -

References

top
  1. [1] N. Burger, Espace des fonctions à variation moyenne bornée sur un espace de nature homogène, C. R. Acad. Sci. Paris Sér. A, 236 (1978), pp. 139-142. Zbl0368.46037MR467176
  2. [2] H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955. Zbl0112.37002MR75623
  3. [3] R.R. Coifman - G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Springer, Berlin - Heidelberg - New York, 1971. Zbl0224.43006MR499948
  4. [4] R.R. Coifman - G. Weiss, Extensions of Hardy Spaces and Their Use in Analysis, Bull. Amer. Math. Soc., 83 (1977), pp. 569-645. Zbl0358.30023MR447954
  5. [5] E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 3 (3) (1957), pp. 25-43. Zbl0084.31901MR93649
  6. [6] E.B. Fabes - C.E. Kenig - R.P. Serapioni, The Local Regularity of Solutions of Degenerate Elliptic Equations, Comm. Partial Differential Equations7 (1) (1982), pp. 77-116. Zbl0498.35042MR643158
  7. [7] C. Fefferman - D. Phong, Subelliptic Eigenvalue Problems, Preprint 1981. MR730094
  8. [8] B. Franchi - E. Lanconelli, De Giorgi's Theorem for a Class of Strongly Degenerate Elliptic Equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 72 (8) (1982), pp. 273-277. Zbl0543.35041MR728257
  9. [9] B. Franchi - E. Lanconelli, Une métrique associée à une classe d'opérateurs elliptiques dégénérés, Proceedings of the meeting «Linear Partial and Pseudo Differential Operators », Torino (1982), Rend. Sem. Mat. Univ. e Politec. Torino, to appear. Zbl0553.35033MR728257
  10. [10] B. Franchi - E. Lanconelli, An Embedding Theorem for Sobolev Spaces Related to Non-Smooth Vector Fields and Harnack Inequality, to appear. Zbl0589.46023
  11. [11] Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin - Heidelberg - New York, 1977. Zbl0361.35003MR473443
  12. [12] L. Hörmander, Hypoelliptic Second-Order Differential Equations, Acta Math.119 (1967), pp. 147-171. Zbl0156.10701MR222474
  13. [13] I.M. Kolodii, Qualitative Properties of the Generalized Solutions of Degenerate Elliptic Equations, Ukrain. Math. Z., 27 (1975), pp. 320-328 = Ukrainian Math. J., 27 (1975), pp. 256-263. Zbl0337.35009MR412576
  14. [14] S.N. Kruzkov, Certain Properties of Solutions to Elliptic Equations, Dokl. Akad. Nauk SSSR, 150 (1963), pp. 470-473 = Soviet Math. Dokl., 4 (1963), pp. 686-690. Zbl0148.35701MR150442
  15. [15] J. Moser, A New Proof of De Giorgi's Theorem Concerning the Regularity Probem for Elliptic Differential Equations, Comm. Pure Appl. Math., 13 (1960), pp. 457-468. Zbl0111.09301MR170091
  16. [16] M.K.V. Murthy - G. Stampacchia, Boundary Value Problems for Some Degenerate-Elliptic Operators, Ann. Mat. Pura Appl., 80 (4) (1968), pp. 1-122. Zbl0185.19201MR249828
  17. [17] J. Nash, Continuity of Solutions of Parabolic and Elliptic Equations, Amer. J. Math., 80 (1958), pp. 931-954. Zbl0096.06902MR100158
  18. [18] N.S. Trudinger, Linear Elliptic Operators with Measurable Coefficients, Ann. Scuola Norm. Sup. Pisa, (3) 27 (1973), pp. 265-308. Zbl0279.35025MR369884

Citations in EuDML Documents

top
  1. Ugo Boscain, Mario Sigalotti, High-order angles in almost-Riemannian geometry
  2. B. Franchi, Propriétés des courbes intégrales de champs de vecteurs et estimations ponctuelles d'équation elliptiques dégénérés
  3. Franchi, Solutions faibles des équations elliptiques du deuxième ordre
  4. Annamaria Montanari, Daniele Morbidelli, Balls defined by nonsmooth vector fields and the Poincaré inequality
  5. B. Franchi, R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators : a geometrical approach
  6. Vittorio Scornazzani, Pointwise estimates for minimizers of some non-uniformly degenerate functionals
  7. Jingbo Dou, Yazhou Han, Ostrowski type inequalities related to the generalized Baouendi-Grushin vector fields
  8. Bruno Franchi, Francesco Serra Cassano, Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals
  9. Bruno Franchi, Piotr Hajłasz, Pekka Koskela, Definitions of Sobolev classes on metric spaces
  10. Bruno Franchi, Piotr Hajłasz, How to get rid of one of the weights in a two-weight Poincaré inequality?

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.