Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients
Bruno Franchi; Ermanno Lanconelli
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1983)
- Volume: 10, Issue: 4, page 523-541
- ISSN: 0391-173X
Access Full Article
topHow to cite
topFranchi, Bruno, and Lanconelli, Ermanno. "Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10.4 (1983): 523-541. <http://eudml.org/doc/83915>.
@article{Franchi1983,
author = {Franchi, Bruno, Lanconelli, Ermanno},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Harnack inequality; Poincaré inequality; Moser technique; De Giorgi theorem; Hölder regularity; weak solutions; degenerate ellipic operator; divergence form},
language = {eng},
number = {4},
pages = {523-541},
publisher = {Scuola normale superiore},
title = {Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients},
url = {http://eudml.org/doc/83915},
volume = {10},
year = {1983},
}
TY - JOUR
AU - Franchi, Bruno
AU - Lanconelli, Ermanno
TI - Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1983
PB - Scuola normale superiore
VL - 10
IS - 4
SP - 523
EP - 541
LA - eng
KW - Harnack inequality; Poincaré inequality; Moser technique; De Giorgi theorem; Hölder regularity; weak solutions; degenerate ellipic operator; divergence form
UR - http://eudml.org/doc/83915
ER -
References
top- [1] N. Burger, Espace des fonctions à variation moyenne bornée sur un espace de nature homogène, C. R. Acad. Sci. Paris Sér. A, 236 (1978), pp. 139-142. Zbl0368.46037MR467176
- [2] H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955. Zbl0112.37002MR75623
- [3] R.R. Coifman - G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Springer, Berlin - Heidelberg - New York, 1971. Zbl0224.43006MR499948
- [4] R.R. Coifman - G. Weiss, Extensions of Hardy Spaces and Their Use in Analysis, Bull. Amer. Math. Soc., 83 (1977), pp. 569-645. Zbl0358.30023MR447954
- [5] E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 3 (3) (1957), pp. 25-43. Zbl0084.31901MR93649
- [6] E.B. Fabes - C.E. Kenig - R.P. Serapioni, The Local Regularity of Solutions of Degenerate Elliptic Equations, Comm. Partial Differential Equations7 (1) (1982), pp. 77-116. Zbl0498.35042MR643158
- [7] C. Fefferman - D. Phong, Subelliptic Eigenvalue Problems, Preprint 1981. MR730094
- [8] B. Franchi - E. Lanconelli, De Giorgi's Theorem for a Class of Strongly Degenerate Elliptic Equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 72 (8) (1982), pp. 273-277. Zbl0543.35041MR728257
- [9] B. Franchi - E. Lanconelli, Une métrique associée à une classe d'opérateurs elliptiques dégénérés, Proceedings of the meeting «Linear Partial and Pseudo Differential Operators », Torino (1982), Rend. Sem. Mat. Univ. e Politec. Torino, to appear. Zbl0553.35033MR728257
- [10] B. Franchi - E. Lanconelli, An Embedding Theorem for Sobolev Spaces Related to Non-Smooth Vector Fields and Harnack Inequality, to appear. Zbl0589.46023
- [11] Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin - Heidelberg - New York, 1977. Zbl0361.35003MR473443
- [12] L. Hörmander, Hypoelliptic Second-Order Differential Equations, Acta Math.119 (1967), pp. 147-171. Zbl0156.10701MR222474
- [13] I.M. Kolodii, Qualitative Properties of the Generalized Solutions of Degenerate Elliptic Equations, Ukrain. Math. Z., 27 (1975), pp. 320-328 = Ukrainian Math. J., 27 (1975), pp. 256-263. Zbl0337.35009MR412576
- [14] S.N. Kruzkov, Certain Properties of Solutions to Elliptic Equations, Dokl. Akad. Nauk SSSR, 150 (1963), pp. 470-473 = Soviet Math. Dokl., 4 (1963), pp. 686-690. Zbl0148.35701MR150442
- [15] J. Moser, A New Proof of De Giorgi's Theorem Concerning the Regularity Probem for Elliptic Differential Equations, Comm. Pure Appl. Math., 13 (1960), pp. 457-468. Zbl0111.09301MR170091
- [16] M.K.V. Murthy - G. Stampacchia, Boundary Value Problems for Some Degenerate-Elliptic Operators, Ann. Mat. Pura Appl., 80 (4) (1968), pp. 1-122. Zbl0185.19201MR249828
- [17] J. Nash, Continuity of Solutions of Parabolic and Elliptic Equations, Amer. J. Math., 80 (1958), pp. 931-954. Zbl0096.06902MR100158
- [18] N.S. Trudinger, Linear Elliptic Operators with Measurable Coefficients, Ann. Scuola Norm. Sup. Pisa, (3) 27 (1973), pp. 265-308. Zbl0279.35025MR369884
Citations in EuDML Documents
top- Ugo Boscain, Mario Sigalotti, High-order angles in almost-Riemannian geometry
- B. Franchi, Propriétés des courbes intégrales de champs de vecteurs et estimations ponctuelles d'équation elliptiques dégénérés
- Franchi, Solutions faibles des équations elliptiques du deuxième ordre
- Annamaria Montanari, Daniele Morbidelli, Balls defined by nonsmooth vector fields and the Poincaré inequality
- B. Franchi, R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators : a geometrical approach
- Vittorio Scornazzani, Pointwise estimates for minimizers of some non-uniformly degenerate functionals
- Jingbo Dou, Yazhou Han, Ostrowski type inequalities related to the generalized Baouendi-Grushin vector fields
- Bruno Franchi, Francesco Serra Cassano, Gehring's lemma for metrics and higher integrability of the gradient for minimizers of noncoercive variational functionals
- Bruno Franchi, Piotr Hajłasz, Pekka Koskela, Definitions of Sobolev classes on metric spaces
- Bruno Franchi, Piotr Hajłasz, How to get rid of one of the weights in a two-weight Poincaré inequality?
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.