On Dragilev type power Köthe spaces

P. Djakov; V. Zahariuta

Studia Mathematica (1996)

  • Volume: 120, Issue: 3, page 219-234
  • ISSN: 0039-3223

Abstract

top
A complete isomorphic classification is obtained for Köthe spaces X = K ( e x p [ χ ( p - κ ( i ) ) - 1 / p ] a i ) such that X q d X 2 ; here χ is the characteristic function of the interval [0,∞), the function κ: ℕ → ℕ repeats its values infinitely many times, and a i . Any of these spaces has the quasi-equivalence property.

How to cite

top

Djakov, P., and Zahariuta, V.. "On Dragilev type power Köthe spaces." Studia Mathematica 120.3 (1996): 219-234. <http://eudml.org/doc/216333>.

@article{Djakov1996,
abstract = {A complete isomorphic classification is obtained for Köthe spaces $X = K(exp[χ(p - κ (i)) - 1/p]a_i)$ such that $X qd_≃ X^2$; here χ is the characteristic function of the interval [0,∞), the function κ: ℕ → ℕ repeats its values infinitely many times, and $a_i → ∞$. Any of these spaces has the quasi-equivalence property.},
author = {Djakov, P., Zahariuta, V.},
journal = {Studia Mathematica},
keywords = {isomorphic classification; Köthe spaces; quasi-equivalence property},
language = {eng},
number = {3},
pages = {219-234},
title = {On Dragilev type power Köthe spaces},
url = {http://eudml.org/doc/216333},
volume = {120},
year = {1996},
}

TY - JOUR
AU - Djakov, P.
AU - Zahariuta, V.
TI - On Dragilev type power Köthe spaces
JO - Studia Mathematica
PY - 1996
VL - 120
IS - 3
SP - 219
EP - 234
AB - A complete isomorphic classification is obtained for Köthe spaces $X = K(exp[χ(p - κ (i)) - 1/p]a_i)$ such that $X qd_≃ X^2$; here χ is the characteristic function of the interval [0,∞), the function κ: ℕ → ℕ repeats its values infinitely many times, and $a_i → ∞$. Any of these spaces has the quasi-equivalence property.
LA - eng
KW - isomorphic classification; Köthe spaces; quasi-equivalence property
UR - http://eudml.org/doc/216333
ER -

References

top
  1. [1] Dragilev M. M.: On special dimensions, defined on some classes of Köthe spaces, Mat. Sb. 80 (1969), 225-240 (in Russian). 
  2. [2] Hall M.: A survey of combinatorial analysis, in: Some Aspects of Analysis and Probability, Surveys Appl. Math. 4, Wiley, New York, 1958, 35-104. 
  3. [3] Kondakov V. P.: Structure of unconditional bases of some Köthe spaces, Studia Math. 76 (1983), 137-151 (in Russian). Zbl0539.46010
  4. [4] V. P. Kondakov and V. P. Zahariuta, On weak equivalence of bases in Köthe spaces, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly Estestv. Nauk 4 (1982), 110-115 (in Russian). 
  5. [5] Mityagin B. S., Approximative dimension and bases in nuclear spaces, Uspekhi Mat. Nauk 16 (4) (1961), 63-132 (in Russian). 
  6. [6] Mityagin B. S., Sur l'équivalence des bases inconditionnelles dans les échelles de Hilbert, C. R. Acad. Sci. Paris 269 (1969), 426-428. Zbl0186.44704
  7. [7] Mityagin B. S., Equivalence of bases in Hilbert scales, Studia Math. 37 (1971), 111-137 (in Russian). 
  8. [8] Zahariuta, V. P., On isomorphisms of Cartesian products of linear topological spaces, Funktsional. Anal. i Prilozhen. 4 (2) (1970), 87-88 (in Russian). 
  9. [9] Zahariuta, V. P., On isomorphisms and quasi-equivalence of bases of power Köthe spaces, in: Proc. 7th Winter School in Drogobych, Moscow, 1976, 101-126 (in Russian). 
  10. [10] Zahariuta, V. P., Generalized Mityagin invariants and a continuum of pairwise nonisomorphic spaces of analytic functions, Funktsional. Anal. i Prilozhen. 11 (3) (1977), 24-30 (in Russian). 
  11. [11] Zahariuta, V. P., Synthetic diameters and linear topological invariants, in: School on Theory of Operators in Function Spaces (abstracts of reports), Minsk, 1978, 51-52 (in Russian). 
  12. [12] Zahariuta, V. P., Linear topological invariants and their applications to generalized power series spaces, Turkish J. Math., to appear. Zbl0866.46005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.