On non-primary Fréchet Schwartz spaces

J. Díaz

Studia Mathematica (1997)

  • Volume: 126, Issue: 3, page 291-307
  • ISSN: 0039-3223

Abstract

top
Let E be a Fréchet Schwartz space with a continuous norm and with a finite-dimensional decomposition, and let F be any infinite-dimensional subspace of E. It is proved that E can be written as G ⨁ H where G and H do not contain any subspace isomorphic to F. In particular, E is not primary. If the subspace F is not normable then the statement holds for other quasinormable Fréchet spaces, e.g., if E is a quasinormable and locally normable Köthe sequence space, or if E is a space of holomorphic functions of bounded type b ( U ) , where U is a Banach space or a bounded absolutely convex open set in a Banach space.

How to cite

top

Díaz, J.. "On non-primary Fréchet Schwartz spaces." Studia Mathematica 126.3 (1997): 291-307. <http://eudml.org/doc/216456>.

@article{Díaz1997,
abstract = {Let E be a Fréchet Schwartz space with a continuous norm and with a finite-dimensional decomposition, and let F be any infinite-dimensional subspace of E. It is proved that E can be written as G ⨁ H where G and H do not contain any subspace isomorphic to F. In particular, E is not primary. If the subspace F is not normable then the statement holds for other quasinormable Fréchet spaces, e.g., if E is a quasinormable and locally normable Köthe sequence space, or if E is a space of holomorphic functions of bounded type $ℋ_b(U)$, where U is a Banach space or a bounded absolutely convex open set in a Banach space.},
author = {Díaz, J.},
journal = {Studia Mathematica},
keywords = {Fréchet spaces; primary spaces; Schwartz spaces; unconditional decompositions; spaces of Moscatelli type; holomorphic functions of bounded type; Fréchet Schwartz space; continuous norm; finite-dimensional decomposition; quasinormable Fréchet spaces; locally normable Köthe sequence space; space of holomorphic functions of bounded type; bounded absolutely convex open set},
language = {eng},
number = {3},
pages = {291-307},
title = {On non-primary Fréchet Schwartz spaces},
url = {http://eudml.org/doc/216456},
volume = {126},
year = {1997},
}

TY - JOUR
AU - Díaz, J.
TI - On non-primary Fréchet Schwartz spaces
JO - Studia Mathematica
PY - 1997
VL - 126
IS - 3
SP - 291
EP - 307
AB - Let E be a Fréchet Schwartz space with a continuous norm and with a finite-dimensional decomposition, and let F be any infinite-dimensional subspace of E. It is proved that E can be written as G ⨁ H where G and H do not contain any subspace isomorphic to F. In particular, E is not primary. If the subspace F is not normable then the statement holds for other quasinormable Fréchet spaces, e.g., if E is a quasinormable and locally normable Köthe sequence space, or if E is a space of holomorphic functions of bounded type $ℋ_b(U)$, where U is a Banach space or a bounded absolutely convex open set in a Banach space.
LA - eng
KW - Fréchet spaces; primary spaces; Schwartz spaces; unconditional decompositions; spaces of Moscatelli type; holomorphic functions of bounded type; Fréchet Schwartz space; continuous norm; finite-dimensional decomposition; quasinormable Fréchet spaces; locally normable Köthe sequence space; space of holomorphic functions of bounded type; bounded absolutely convex open set
UR - http://eudml.org/doc/216456
ER -

References

top
  1. [1] A. Albanese, Primary products of Banach spaces, Arch. Math. (Basel) 66 (1996), 397-405. Zbl0859.46003
  2. [2] A. Albanese, Montel subspaces in Fréchet spaces of Moscatelli type, Glasgow Math. J., to appear. 
  3. [3] A. Albanese and V. B. Moscatelli, The spaces ( p ) q ( q ) , 1 ≤ p < q ≤ ∞ are primary, preprint. 
  4. [4] A. Albanese and V. B. Moscatelli, Complemented subspaces of sums and products of copies of L 1 [ 0 , 1 ] , Rev. Mat. Univ. Complut. Madrid 9 (1996), 275-287. Zbl0885.46026
  5. [5] A. Benndorf, On the relation of the bounded approximation property and a finite dimensional decomposition in nuclear Fréchet spaces, Studia Math. 75 (1983), 103-119. Zbl0541.46002
  6. [6] C. Bessaga, Geometrical methods of the theory of Fréchet spaces, in: Functional Analysis and its Applications, H. Hogbe-Nlend (ed.), World Sci., Singapore, 1988, 1-34. 
  7. [7] K. D. Bierstedt, R. G. Meise and N. H. Summers, Köthe sets and Köthe sequence spaces, in: Functional Analysis, Holomorphy and Approximation Theory, North-Holland Math. Stud. 71, North-Holland, Amsterdam, 1982, 27-91. Zbl0504.46007
  8. [8] J. Bonet and J. C. Díaz, On the weak quasinormability condition of Grothendieck, Tr. J. Math. 15 (1991), 154-164. Zbl0970.46527
  9. [9] J. Bonet and S. Dierolf, Fréchet spaces of Moscatelli type, Rev. Mat. Univ. Complut. Madrid 2 (1989), 77-92. Zbl0757.46001
  10. [10] J. M. F. Castillo, J. C. Díaz and J. Motos, On the Fréchet space L p - , preprint. 
  11. [11] J. C. Díaz, Primariness of some universal Fréchet spaces, in: Functional Analysis, S. Dierolf, S. Dineen and P. Domański (eds.), de Gruyter, Berlin, 1996, 95-103. Zbl0905.46002
  12. [12] J. C. Díaz and M. A. Miñarro, Universal Köthe sequence spaces, Monatsh. Math., to appear. 
  13. [13] J. C. Díaz and S. Dineen, Polynomials on stable spaces, Ark. Mat., to appear. Zbl0929.46036
  14. [14] S. Dineen, Complex Analysis in Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, Amsterdam, 1981. Zbl0484.46044
  15. [15] S. Dineen, Quasinormable spaces of holomorphic functions, Note Mat. 13 (1993), 155-195. Zbl0838.46036
  16. [16] P. B. Djakov, M. Yurdakul and V. P. Zahariuta, Isomorphic classification of cartesian products of power series spaces, Michigan Math. J. 43 (1996), 221-229. Zbl0890.46008
  17. [17] P. B. Djakov and V. P. Zahariuta, On Dragilev type power Köthe spaces, Studia Math. 120 (1996), 219-234. Zbl0864.46003
  18. [18] P. Domański and A. Ortyński, Complemented subspaces of products of Banach spaces, Trans. Amer. Math. Soc. 316 (1989), 215-231. Zbl0693.46017
  19. [19] P. Galindo, M. Maestre and P. Rueda, Biduality in spaces of holomorphic functions, preprint. Zbl0968.46026
  20. [20] J. M. Isidro, Quasinormability of some spaces of holomorphic mappings, Rev. Mat. Univ. Complut. Madrid 3 (1990), 13-17. Zbl0709.46017
  21. [21] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. Zbl0466.46001
  22. [22] G. Köthe, Topological Vector Spaces, I, Springer, New York, 1969. Zbl0179.17001
  23. [23] G. Metafune and V. B. Moscatelli, Complemented subspaces of sums and products of Banach spaces, Ann. Mat. Pura Appl. 153 (1988), 175-190. Zbl0684.46026
  24. [24] G. Metafune and V. B. Moscatelli, On the space p + = q > p q , Math. Nachr. 147 (1990), 47-52. 
  25. [25] A. Peris, Quasinormable spaces and the problem of topologies of Grothendieck, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 167-203. Zbl0789.46006
  26. [26] T. Terzioğlu and D. Vogt, A Köthe space which has a continuous norm but whose bidual does not, Arch. Math. (Basel) 54 (1990), 180-183. Zbl0724.46008
  27. [27] V. P. Zahariuta, Linear topological invariants and their applications to isomorphic classification of generalized power spaces, Rostov. Univ., 1979 (in Russian); revised English version: Turkish J. Math. 20 (1996), 237-289. Zbl0866.46005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.