Sufficient conditions for weighted Gabushin inequalities

Richard C. Brown; Don B. Hinton

Časopis pro pěstování matematiky (1986)

  • Volume: 111, Issue: 2, page 113-122
  • ISSN: 0528-2195

How to cite

top

Brown, Richard C., and Hinton, Don B.. "Sufficient conditions for weighted Gabushin inequalities." Časopis pro pěstování matematiky 111.2 (1986): 113-122. <http://eudml.org/doc/21634>.

@article{Brown1986,
author = {Brown, Richard C., Hinton, Don B.},
journal = {Časopis pro pěstování matematiky},
keywords = {Gabushin inequalities; inequality of Landau type; intermediate derivative; weighted estimate},
language = {eng},
number = {2},
pages = {113-122},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {Sufficient conditions for weighted Gabushin inequalities},
url = {http://eudml.org/doc/21634},
volume = {111},
year = {1986},
}

TY - JOUR
AU - Brown, Richard C.
AU - Hinton, Don B.
TI - Sufficient conditions for weighted Gabushin inequalities
JO - Časopis pro pěstování matematiky
PY - 1986
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 111
IS - 2
SP - 113
EP - 122
LA - eng
KW - Gabushin inequalities; inequality of Landau type; intermediate derivative; weighted estimate
UR - http://eudml.org/doc/21634
ER -

References

top
  1. R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. (1975) Zbl0314.46030MR0450957
  2. R. C. Brown D. B. Hinton, Sufficient conditions for weighted inequalities of sum form, J. Math. Anal. Appl., to appear. Zbl0587.26011MR0813620
  3. V. N. Gabushin, Inequalities for the norms of a function and its derivatives in metric Lp, Mat. Zametki 1 (1967), 291 - 298. (English version in Mathematical Notes vol. 1, 194- 198). (1967) Zbl0164.15301MR0206700
  4. E. Gagliardo, Proprieta di alcune classi di funzioni in piu variabili, Ricerche di Mathematica di Napoli 7 (1958), 102-137. (1958) Zbl0089.09401MR0102740
  5. E. Gagliardo, Ulteriori di alcume classi funzioni in piu variabili, Ricerche di Mathematica di Napoli 8 (1959), 23-51. (1959) Zbl0199.44701MR0109295
  6. J. A. Goldstein M. K. Kwong A. Zettl, Weighted Landau Inequalities, J. Math. Anal. Appl. 95 (1983), 20-28. (1983) Zbl0528.26007MR0710417
  7. D. Henry, How to remember the Sobolev inequalities, in Differential Equations, (proceedings of the 1st Latin American School of Differential Equations, Sao Paulo, Brazil, 1981). Lecture Notes in Mathematics 957, Springer, Berlin, 1982, 97- 109. (1981) Zbl0511.46029MR0679142
  8. M. K. Kwong A. Zettl, Ramifications of Landau's inequality, Proc. Royal Soc. Edinburgh 86A (1980, 175-212. (1980) Zbl0453.26007MR0592549
  9. M. K. Kwong A. Zettl, Weighted norm inequalities of sum form involving derivatives, Proc. Royal Soc. Edinburgh 88A (1981), 121-134. (1981) Zbl0463.26004MR0611305
  10. M. K. Kwong A. Zettl, Norm Inequalities of product form in weighted LP spaces, Proc. Royal. Soc. Edinburgh 89A (1981), 293-307. (1981) Zbl0475.26008MR0635765
  11. A. Kufner O. John S. Fučík, Function Spaces, Noordhoff International Publishers, Leyden, 1977. (1977) Zbl0364.46022MR0482102
  12. A. Marshall I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979. (1979) Zbl0437.26007MR0552278
  13. C. Miranda, Su alcuni teoremi di inclusione, Annales Polonici Mathematici 16 (1965), 305-315. (1965) Zbl0172.40303MR0187077
  14. D. S. Mitrinovic, Analytic Inequalities, Springer, Berlin, 1970. (1970) Zbl0199.38101MR0274686
  15. L. Nirenberg, On elliptic partial differential equations, Annali del la Scuola Norm. Sup. Pisa, Ser. III 13 (1958), 115-162. (1958) Zbl0088.07601MR0109940
  16. H. Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhauser, Basel, 1983. (1983) Zbl0546.46028MR0781540

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.