An uncertainty principle related to the Poisson summation formula

K. Gröchenig

Studia Mathematica (1996)

  • Volume: 121, Issue: 1, page 87-104
  • ISSN: 0039-3223

Abstract

top
We prove a class of uncertainty principles of the form S g f 1 C ( x a f p + ω b f ̂ q ) , where S g f is the short time Fourier transform of f. We obtain a characterization of the range of parameters a,b,p,q for which such an uncertainty principle holds. Counter-examples are constructed using Gabor expansions and unimodular polynomials. These uncertainty principles relate the decay of f and f̂ to their behaviour in phase space. Two applications are given: (a) If such an inequality holds, then the Poisson summation formula is valid with absolute convergence of both sums. (b) The validity of an uncertainty principle implies sufficient conditions on a symbol σ such that the corresponding pseudodifferential operator is of trace class.

How to cite

top

Gröchenig, K.. "An uncertainty principle related to the Poisson summation formula." Studia Mathematica 121.1 (1996): 87-104. <http://eudml.org/doc/216344>.

@article{Gröchenig1996,
abstract = {We prove a class of uncertainty principles of the form $∥S_\{g\}f∥_\{1\} ≤ C(∥x^\{a\}f∥_\{p\} + ∥ω^\{b\}f̂∥_\{q\})$, where $S_\{g\}f$ is the short time Fourier transform of f. We obtain a characterization of the range of parameters a,b,p,q for which such an uncertainty principle holds. Counter-examples are constructed using Gabor expansions and unimodular polynomials. These uncertainty principles relate the decay of f and f̂ to their behaviour in phase space. Two applications are given: (a) If such an inequality holds, then the Poisson summation formula is valid with absolute convergence of both sums. (b) The validity of an uncertainty principle implies sufficient conditions on a symbol σ such that the corresponding pseudodifferential operator is of trace class.},
author = {Gröchenig, K.},
journal = {Studia Mathematica},
keywords = {uncertainty principle; Poisson summation formula; unimodular polynomial; modulation space; time-frequency analysis; phase space; uncertainty principles; short time Fourier transform; Gabor expansions; unimodular polynomials},
language = {eng},
number = {1},
pages = {87-104},
title = {An uncertainty principle related to the Poisson summation formula},
url = {http://eudml.org/doc/216344},
volume = {121},
year = {1996},
}

TY - JOUR
AU - Gröchenig, K.
TI - An uncertainty principle related to the Poisson summation formula
JO - Studia Mathematica
PY - 1996
VL - 121
IS - 1
SP - 87
EP - 104
AB - We prove a class of uncertainty principles of the form $∥S_{g}f∥_{1} ≤ C(∥x^{a}f∥_{p} + ∥ω^{b}f̂∥_{q})$, where $S_{g}f$ is the short time Fourier transform of f. We obtain a characterization of the range of parameters a,b,p,q for which such an uncertainty principle holds. Counter-examples are constructed using Gabor expansions and unimodular polynomials. These uncertainty principles relate the decay of f and f̂ to their behaviour in phase space. Two applications are given: (a) If such an inequality holds, then the Poisson summation formula is valid with absolute convergence of both sums. (b) The validity of an uncertainty principle implies sufficient conditions on a symbol σ such that the corresponding pseudodifferential operator is of trace class.
LA - eng
KW - uncertainty principle; Poisson summation formula; unimodular polynomial; modulation space; time-frequency analysis; phase space; uncertainty principles; short time Fourier transform; Gabor expansions; unimodular polynomials
UR - http://eudml.org/doc/216344
ER -

References

top
  1. [1] J. J. Benedetto, Frame decompositions, sampling, and uncertainty principle inequalities, in: Wavelets: Mathematics and Applications, J. Benedetto and M. Frazier (eds.), CRC Press, Boca Raton, 1994, 247-304. Zbl1090.94516
  2. [2] M. G. Cowling and J. F. Price, Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality, SIAM J. Math. Anal. 15 (1984), 151-165. 
  3. [3] I. Daubechies, On the distributions corresponding to bounded operators in the Weyl quantization, Comm. Math. Phys. 75 (1980), 229-238. Zbl0451.47059
  4. [4] D. L. Donoho and P. B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math. 49 (1989), 906-931. Zbl0689.42001
  5. [5] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. Zbl0526.35080
  6. [6] H. G. Feichtinger, On a new Segal algebra, Monatsh. Math. 92 (1981), 269-289. Zbl0461.43003
  7. [7] H. G. Feichtinger, Un espace de Banach de distributions tempérées sur les groupes localement compacts abéliens, C. R. Acad. Sci. Paris Sér. A 290 (1980), 791-794. Zbl0433.43002
  8. [8] H. G. Feichtinger, Atomic characterizations of modulation spaces through Gabor-type representations, Proc. Conf. "Constructive Function Theory", Edmonton, July 1986, Rocky Mountain J. Math. 19 (1989), 113-126. 
  9. [9] H. G. Feichtinger, personal communication. 
  10. [10] H. Feichtinger and K. Gröchenig, Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view, in: Wavelets: A Tutorial in Theory and Applications, Ch. K. Chui (ed.), Academic Press, Boston, 1992, 359-397. Zbl0849.43003
  11. [11] G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, 1989. Zbl0682.43001
  12. [12] K. Gröchenig, Describing functions: atomic decompositions versus frames, Monatsh. Math. 112 (1991), 1-42. Zbl0736.42022
  13. [13] C. Heil, J. Ramanathan and P. Topiwala, Singular values of compact pseudodifferential operators, preprint, 1995. Zbl0990.35139
  14. [14] C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666. Zbl0683.42031
  15. [15] J.-P. Kahane, Sur les polynômes à coefficients unimodulaires, Bull. London Math. Soc. 12 (1980), 321-342. 
  16. [16] J.-P. Kahane et P. G. Lemarié-Rieusset, Remarques sur la formule sommatoire de Poisson, Studia Math. 109 (1994), 303-316. 
  17. [17] Y. Katznelson, Une remarque concernant la formule de Poisson, ibid. 29 (1967), 107-108. Zbl0169.39602
  18. [18] E. Lieb, Integral bounds for radar ambiguity functions and Wigner distributions, J. Math. Phys. 31 (3) (1990), 594-599. Zbl0704.46050
  19. [19] V. Losert, A characterization of the minimal strongly character invariant Segal algebra, Ann. Inst. Fourier (Grenoble) 30 (1980), 129-139. Zbl0425.43003
  20. [20] J. F. Price, Inequalities and local uncertainty principles, J. Math. Phys. 24 (1983), 1711-1714. Zbl0513.60100
  21. [21] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. Zbl0821.42001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.