An uncertainty principle related to the Poisson summation formula
Studia Mathematica (1996)
- Volume: 121, Issue: 1, page 87-104
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topGröchenig, K.. "An uncertainty principle related to the Poisson summation formula." Studia Mathematica 121.1 (1996): 87-104. <http://eudml.org/doc/216344>.
@article{Gröchenig1996,
abstract = {We prove a class of uncertainty principles of the form $∥S_\{g\}f∥_\{1\} ≤ C(∥x^\{a\}f∥_\{p\} + ∥ω^\{b\}f̂∥_\{q\})$, where $S_\{g\}f$ is the short time Fourier transform of f. We obtain a characterization of the range of parameters a,b,p,q for which such an uncertainty principle holds. Counter-examples are constructed using Gabor expansions and unimodular polynomials. These uncertainty principles relate the decay of f and f̂ to their behaviour in phase space. Two applications are given: (a) If such an inequality holds, then the Poisson summation formula is valid with absolute convergence of both sums. (b) The validity of an uncertainty principle implies sufficient conditions on a symbol σ such that the corresponding pseudodifferential operator is of trace class.},
author = {Gröchenig, K.},
journal = {Studia Mathematica},
keywords = {uncertainty principle; Poisson summation formula; unimodular polynomial; modulation space; time-frequency analysis; phase space; uncertainty principles; short time Fourier transform; Gabor expansions; unimodular polynomials},
language = {eng},
number = {1},
pages = {87-104},
title = {An uncertainty principle related to the Poisson summation formula},
url = {http://eudml.org/doc/216344},
volume = {121},
year = {1996},
}
TY - JOUR
AU - Gröchenig, K.
TI - An uncertainty principle related to the Poisson summation formula
JO - Studia Mathematica
PY - 1996
VL - 121
IS - 1
SP - 87
EP - 104
AB - We prove a class of uncertainty principles of the form $∥S_{g}f∥_{1} ≤ C(∥x^{a}f∥_{p} + ∥ω^{b}f̂∥_{q})$, where $S_{g}f$ is the short time Fourier transform of f. We obtain a characterization of the range of parameters a,b,p,q for which such an uncertainty principle holds. Counter-examples are constructed using Gabor expansions and unimodular polynomials. These uncertainty principles relate the decay of f and f̂ to their behaviour in phase space. Two applications are given: (a) If such an inequality holds, then the Poisson summation formula is valid with absolute convergence of both sums. (b) The validity of an uncertainty principle implies sufficient conditions on a symbol σ such that the corresponding pseudodifferential operator is of trace class.
LA - eng
KW - uncertainty principle; Poisson summation formula; unimodular polynomial; modulation space; time-frequency analysis; phase space; uncertainty principles; short time Fourier transform; Gabor expansions; unimodular polynomials
UR - http://eudml.org/doc/216344
ER -
References
top- [1] J. J. Benedetto, Frame decompositions, sampling, and uncertainty principle inequalities, in: Wavelets: Mathematics and Applications, J. Benedetto and M. Frazier (eds.), CRC Press, Boca Raton, 1994, 247-304. Zbl1090.94516
- [2] M. G. Cowling and J. F. Price, Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality, SIAM J. Math. Anal. 15 (1984), 151-165.
- [3] I. Daubechies, On the distributions corresponding to bounded operators in the Weyl quantization, Comm. Math. Phys. 75 (1980), 229-238. Zbl0451.47059
- [4] D. L. Donoho and P. B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math. 49 (1989), 906-931. Zbl0689.42001
- [5] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. Zbl0526.35080
- [6] H. G. Feichtinger, On a new Segal algebra, Monatsh. Math. 92 (1981), 269-289. Zbl0461.43003
- [7] H. G. Feichtinger, Un espace de Banach de distributions tempérées sur les groupes localement compacts abéliens, C. R. Acad. Sci. Paris Sér. A 290 (1980), 791-794. Zbl0433.43002
- [8] H. G. Feichtinger, Atomic characterizations of modulation spaces through Gabor-type representations, Proc. Conf. "Constructive Function Theory", Edmonton, July 1986, Rocky Mountain J. Math. 19 (1989), 113-126.
- [9] H. G. Feichtinger, personal communication.
- [10] H. Feichtinger and K. Gröchenig, Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view, in: Wavelets: A Tutorial in Theory and Applications, Ch. K. Chui (ed.), Academic Press, Boston, 1992, 359-397. Zbl0849.43003
- [11] G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, 1989. Zbl0682.43001
- [12] K. Gröchenig, Describing functions: atomic decompositions versus frames, Monatsh. Math. 112 (1991), 1-42. Zbl0736.42022
- [13] C. Heil, J. Ramanathan and P. Topiwala, Singular values of compact pseudodifferential operators, preprint, 1995. Zbl0990.35139
- [14] C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666. Zbl0683.42031
- [15] J.-P. Kahane, Sur les polynômes à coefficients unimodulaires, Bull. London Math. Soc. 12 (1980), 321-342.
- [16] J.-P. Kahane et P. G. Lemarié-Rieusset, Remarques sur la formule sommatoire de Poisson, Studia Math. 109 (1994), 303-316.
- [17] Y. Katznelson, Une remarque concernant la formule de Poisson, ibid. 29 (1967), 107-108. Zbl0169.39602
- [18] E. Lieb, Integral bounds for radar ambiguity functions and Wigner distributions, J. Math. Phys. 31 (3) (1990), 594-599. Zbl0704.46050
- [19] V. Losert, A characterization of the minimal strongly character invariant Segal algebra, Ann. Inst. Fourier (Grenoble) 30 (1980), 129-139. Zbl0425.43003
- [20] J. F. Price, Inequalities and local uncertainty principles, J. Math. Phys. 24 (1983), 1711-1714. Zbl0513.60100
- [21] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. Zbl0821.42001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.