On the maximal operator associated with the free Schrödinger equation

Sichun Wang

Studia Mathematica (1997)

  • Volume: 122, Issue: 2, page 167-182
  • ISSN: 0039-3223

Abstract

top
For d > 1, let ( S d f ) ( x , t ) = ʃ n e i x · ξ e i t | ξ | d f ̂ ( ξ ) d ξ , x n , where f̂ is the Fourier transform of f S ( n ) , and ( S d * f ) ( x ) = s u p 0 < t < 1 | ( S d f ) ( x , t ) | its maximal operator. P. Sjölin ([11]) has shown that for radial f, the estimate (*) ( ʃ | x | < R | ( S d * f ) ( x ) | p d x ) 1 / p C R f H 1 / 4 holds for p = 4n/(2n-1) and fails for p > 4n/(2n-1). In this paper we show that for non-radial f, (*) fails for p > 2. A similar result is proved for a more general maximal operator.

How to cite

top

Wang, Sichun. "On the maximal operator associated with the free Schrödinger equation." Studia Mathematica 122.2 (1997): 167-182. <http://eudml.org/doc/216368>.

@article{Wang1997,
abstract = {For d > 1, let $(S_\{d\}f)(x,t) = ʃ_\{ℝ^n\} e^\{ix·ξ\} e^\{it|ξ|^d\} f̂(ξ)dξ$, $x ∈ ℝ^n$, where f̂ is the Fourier transform of $f ∈ S (ℝ^n)$, and $(S_\{d\}*f)(x) = sup_\{0 < t < 1\} |(S_\{d\}f)(x,t)|$ its maximal operator. P. Sjölin ([11]) has shown that for radial f, the estimate (*) $(ʃ_\{|x| < R\} |(S_\{d\}*f)(x)|^p dx)^\{1/p\} ≤ C_\{R\}∥f∥_\{H_\{1/4\}\}$ holds for p = 4n/(2n-1) and fails for p > 4n/(2n-1). In this paper we show that for non-radial f, (*) fails for p > 2. A similar result is proved for a more general maximal operator.},
author = {Wang, Sichun},
journal = {Studia Mathematica},
keywords = {free Schrödinger equation; maximal functions; spherical harmonics; oscillatory integrals; Schrödinger operator; -estimates},
language = {eng},
number = {2},
pages = {167-182},
title = {On the maximal operator associated with the free Schrödinger equation},
url = {http://eudml.org/doc/216368},
volume = {122},
year = {1997},
}

TY - JOUR
AU - Wang, Sichun
TI - On the maximal operator associated with the free Schrödinger equation
JO - Studia Mathematica
PY - 1997
VL - 122
IS - 2
SP - 167
EP - 182
AB - For d > 1, let $(S_{d}f)(x,t) = ʃ_{ℝ^n} e^{ix·ξ} e^{it|ξ|^d} f̂(ξ)dξ$, $x ∈ ℝ^n$, where f̂ is the Fourier transform of $f ∈ S (ℝ^n)$, and $(S_{d}*f)(x) = sup_{0 < t < 1} |(S_{d}f)(x,t)|$ its maximal operator. P. Sjölin ([11]) has shown that for radial f, the estimate (*) $(ʃ_{|x| < R} |(S_{d}*f)(x)|^p dx)^{1/p} ≤ C_{R}∥f∥_{H_{1/4}}$ holds for p = 4n/(2n-1) and fails for p > 4n/(2n-1). In this paper we show that for non-radial f, (*) fails for p > 2. A similar result is proved for a more general maximal operator.
LA - eng
KW - free Schrödinger equation; maximal functions; spherical harmonics; oscillatory integrals; Schrödinger operator; -estimates
UR - http://eudml.org/doc/216368
ER -

References

top
  1. [1] M. Ben-Artzi and A. Devinatz, Local smoothing and convergence properties of Schrödinger type equations, J. Funct. Anal. 101 (1991), 231-254. 
  2. [2] J. Bourgain, A remark on Schrödinger operators, Israel J. Math. 77 (1992), 1-16. 
  3. [3] L. Carleson, Some analytical problems related to statistical mechanics, in: Euclidean Harmonic Analysis, Lecture Notes in Math. 779, Springer, 1979, 5-45. 
  4. [4] M. Cowling, Pointwise behavior of solutions to Schrödinger equations, in: Harmonic Analysis, Lecture Notes in Math. 992, Springer, 1983, 83-90. 
  5. [5] B. E. J. Dahlberg and C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation, in: Harmonic Analysis, Lecture Notes in Math. 908, Springer, 1982, 205-209. 
  6. [6] C. E. Kenig, G. Ponce, and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69. Zbl0738.35022
  7. [7] C. E. Kenig and A. Ruiz, A strong type (2,2) estimate for a maximal operator associated to the Schrödinger equation, Trans. Amer. Math. Soc. 280 (1983), 239-246. Zbl0525.42011
  8. [8] E. Prestini, Radial functions and regularity of solutions to the Schrödinger equation, Monatsh. Math. 109 (1990), 135-143. Zbl0777.42005
  9. [9] W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, 1976. 
  10. [10] P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699-715. Zbl0631.42010
  11. [11] P. Sjölin, Radial functions and maximal estimates for solutions to the Schrödinger equation, J. Austral. Math. Soc. Ser. A 59 (1995), 134-142. Zbl0856.42013
  12. [12] P. Sjölin, Global maximal estimates for solutions to the Schrödinger equation, Studia Math. 110 (1994), 105-114. Zbl0829.42017
  13. [13] P. Sjölin, L p maximal estimates for solutions to the Schrödinger equation, informal notes, Aug. 1994. Zbl0829.42017
  14. [14] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971. Zbl0232.42007
  15. [15] L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874-878. Zbl0654.42014
  16. [16] J. Walker, Fourier Analysis, Oxford Univ. Press, 1988. Zbl0669.42001
  17. [17] S. Wang, A note on the maximal operator associated with the Schrödinger equation, Preprint series No. 7 (1993-1994), Dept. of Math. and Statistics, McMaster Univ., Canada. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.