Moment inequalities for sums of certain independent symmetric random variables

P. Hitczenko; S. Montgomery-Smith; K. Oleszkiewicz

Studia Mathematica (1997)

  • Volume: 123, Issue: 1, page 15-42
  • ISSN: 0039-3223

Abstract

top
This paper gives upper and lower bounds for moments of sums of independent random variables ( X k ) which satisfy the condition P ( | X | k t ) = e x p ( - N k ( t ) ) , where N k are concave functions. As a consequence we obtain precise information about the tail probabilities of linear combinations of independent random variables for which N ( t ) = | t | r for some fixed 0 < r ≤ 1. This complements work of Gluskin and Kwapień who have done the same for convex functions N.

How to cite

top

Hitczenko, P., Montgomery-Smith, S., and Oleszkiewicz, K.. "Moment inequalities for sums of certain independent symmetric random variables." Studia Mathematica 123.1 (1997): 15-42. <http://eudml.org/doc/216377>.

@article{Hitczenko1997,
abstract = {This paper gives upper and lower bounds for moments of sums of independent random variables $(X_k)$ which satisfy the condition $P(|X|_k ≥ t) = exp(-N_k(t))$, where $N_k$ are concave functions. As a consequence we obtain precise information about the tail probabilities of linear combinations of independent random variables for which $N(t) = |t|^r$ for some fixed 0 < r ≤ 1. This complements work of Gluskin and Kwapień who have done the same for convex functions N.},
author = {Hitczenko, P., Montgomery-Smith, S., Oleszkiewicz, K.},
journal = {Studia Mathematica},
keywords = {moment inequalities; sums of independent symmetric random variables},
language = {eng},
number = {1},
pages = {15-42},
title = {Moment inequalities for sums of certain independent symmetric random variables},
url = {http://eudml.org/doc/216377},
volume = {123},
year = {1997},
}

TY - JOUR
AU - Hitczenko, P.
AU - Montgomery-Smith, S.
AU - Oleszkiewicz, K.
TI - Moment inequalities for sums of certain independent symmetric random variables
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 1
SP - 15
EP - 42
AB - This paper gives upper and lower bounds for moments of sums of independent random variables $(X_k)$ which satisfy the condition $P(|X|_k ≥ t) = exp(-N_k(t))$, where $N_k$ are concave functions. As a consequence we obtain precise information about the tail probabilities of linear combinations of independent random variables for which $N(t) = |t|^r$ for some fixed 0 < r ≤ 1. This complements work of Gluskin and Kwapień who have done the same for convex functions N.
LA - eng
KW - moment inequalities; sums of independent symmetric random variables
UR - http://eudml.org/doc/216377
ER -

References

top
  1. T. Figiel, P. Hitczenko, W. B. Johnson, G. Schechtman, and J. Zinn (1994), Extremal properties of Rademacher functions with applications to Khintchine and Rosenthal inequalities, Trans. Amer. Math. Soc., to appear. Zbl0867.60006
  2. T. Figiel, T. Iwaniec and A. Pełczyński (1984), Computing norms and critical exponents of some operators in L p -spaces, Studia Math. 79, 227-274. Zbl0599.46035
  3. E. D. Gluskin and S. Kwapień (1995), Tail and moment estimates for sums of independent random variables with logarithmically concave tails, ibid. 114, 303-309. Zbl0834.60050
  4. U. Haagerup (1982), Best constants in the Khintchine's inequality, ibid. 70, 231-283. Zbl0501.46015
  5. M. G. Hahn and M. J. Klass (1995), Approximation of partial sums of arbitrary i.i.d. random variables and the precision of the usual exponential bound, preprint. 
  6. P. Hitczenko (1993), Domination inequality for martingale transforms of Rademacher sequence, Israel J. Math. 84, 161-178. Zbl0781.60037
  7. P. Hitczenko (1994), On a domination of sums of random variables by sums of conditionally independent ones, Ann. Probab. 22, 453-468. Zbl0809.60022
  8. P. Hitczenko and S. Kwapień (1994), On the Rademacher series, in: Probability in Banach Spaces, 9, Sandbjerg 1993, J. Hoffmann-Jørgensen, J. Kuelbs and M. B. Marcus (eds.), Birkhäuser, Boston, 1994, 31-36. Zbl0822.60013
  9. N. L. Johnson and S. Kotz (1970), Continuous Univariate Distributions, Houghton-Mifflin, New York. Zbl0213.21101
  10. W. B. Johnson, G. Schechtman and J. Zinn (1983), Best constants in moment inequalities for linear combinations of independent and exchangeable random variables, Ann. Probab. 13, 234-253. Zbl0564.60020
  11. M. Klass (1976), Precision bounds for the relative error in the approximation of E | S n | and extensions, ibid. 8, 350-367. Zbl0428.60058
  12. S. Kwapień and J. Szulga (1991), Hypercontraction methods in moment inequalities for series of independent random variables in normed spaces, ibid. 19, 1-8. Zbl0718.60044
  13. S. Kwapień and W. A. Woyczyński (1992), Random Series and Stochastic Integrals. Single and Multiple, Birkhäuser, Boston. Zbl0751.60035
  14. M. Ledoux and M. Talagrand (1991), Probability in Banach Spaces, Springer, Berlin. Zbl0748.60004
  15. A. W. Marshall and I. Olkin (1979), Inequalities: Theory of Majorization and Its Applications, Academic Press, New York. Zbl0437.26007
  16. S. J. Montgomery-Smith (1990), The distribution of Rademacher sums, Proc. Amer. Math. Soc. 109, 517-522. Zbl0696.60013
  17. S. J. Montgomery-Smith (1992), Comparison of Orlicz-Lorentz spaces, Studia Math. 103, 161-189. Zbl0814.46023
  18. I. Pinelis (1994), Extremal probabilistic problems and Hotelling’s T 2 test under a symmetry condition, Ann. Statist. 22, 357-368. Zbl0812.62065
  19. I. Pinelis (1994), Optimum bounds for the distributions of martingales in Banach spaces, Ann. Probab. 22, 1679-1706. Zbl0836.60015
  20. H. P. Rosenthal (1970), On the subspaces of L p (p>2) spanned by sequences of independent random variables, Israel J. Math. 8, 273-303. Zbl0213.19303
  21. G. Schechtman and J. Zinn (1990), On the volume of the intersection of two L p n balls, Proc. Amer. Math. Soc. 110, 217-224. Zbl0704.60017
  22. M. Talagrand (1989), Isoperimetry and integrability of the sum of independent Banach-space valued random variables, Ann. Probab. 17, 1546-1570. Zbl0692.60016
  23. S. A. Utev (1985), Extermal problems in moment inequalities, in: Limit Theorems in Probability Theory, Trudy Inst. Mat., Novosibirsk, 1985, 56-75 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.