The large deviation principle for certain series
ESAIM: Probability and Statistics (2010)
- Volume: 8, page 200-220
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- M.A. Arcones, The large deviation principle for stochastic processes I. Theor. Probab. Appl.47 (2003) 567–583. Zbl1069.60026
- M.A. Arcones, The large deviation principle for stochastic processes. II. Theor. Probab. Appl.48 (2004) 19–44. Zbl1069.60027
- J.R. Baxter and C.J. Naresh, An approximation condition for large deviations and some applications, in Convergence in ergodic theory and probability (Columbus, OH, 1993), de Gruyter, Berlin. Ohio State Univ. Math. Res. Inst. Publ.5 (1996) 63–90. Zbl0858.60029
- N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation. Cambridge University Press, Cambridge, UK (1987). Zbl0617.26001
- Y.S. Chow and H. Teicher, Probability Theory. Independence, Interchangeability, Martingales. Springer-Verlag, New York (1978).
- A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Springer, New York (1998). Zbl0896.60013
- J.D. Deuschel and D.W. Stroock, Large Deviations. Academic Press, Inc., Boston, MA (1989).
- E.D. Gluskin and S. Kwapień, Tail and moment estimates for sums of independent random variables with logarithmically concave tails. Studia Math.114 (1995) 303–309. Zbl0834.60050
- P. Hitczenko, S.J. Montgomery-Smith and K. Oleszkiewicz, Moment inequalities for sums of certain independent symmetric random variables. Studia Math.123 (1997) 15–42. Zbl0967.60018
- S. Kwapień and W.A. Woyczyński, Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston (1992). Zbl0751.60035
- R. Latala, Tail and moment estimates for sums of independent random vectors with logarithmically concave tails. Studia Math.118 (1996) 301–304. Zbl0847.60031
- M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer-Verlag, New York (1991). Zbl0748.60004
- M. Ledoux, The Concentration of Measure Phenomenon. American Mathematical Society, Providence, Rhode Island (2001). Zbl0995.60002
- J. Lynch and J. Sethuraman, Large deviations for processes with independent increments. Ann. Probab.15 (1987) 610–627. Zbl0624.60045
- M. Talagrand, A new isoperimetric inequality and the concentration of measure phenomenon. Geometric aspects of functional analysis (1989–90), Springer, Berlin. Lect. Notes Math.1469 (1991) 94–124.
- M. Talagrand, The supremum of some canonical processes. Amer. J. Math.116 (1994) 283–325. Zbl0798.60040
- S.R.S. Varadhan, Asymptotic probabilities and differential equations. Comm. Pures App. Math.19 (1966) 261–286. Zbl0147.15503