Some remarks on the strong limit-point condition of second-order linear differential expressions

William Norrie Everitt

Časopis pro pěstování matematiky (1986)

  • Volume: 111, Issue: 2, page 137-145
  • ISSN: 0528-2195

How to cite

top

Everitt, William Norrie. "Some remarks on the strong limit-point condition of second-order linear differential expressions." Časopis pro pěstování matematiky 111.2 (1986): 137-145. <http://eudml.org/doc/21638>.

@article{Everitt1986,
author = {Everitt, William Norrie},
journal = {Časopis pro pěstování matematiky},
keywords = {strong limit point; Dirichlet; second order linear differential equations; selfadjoint extensions; Sturm-Liouville problems},
language = {eng},
number = {2},
pages = {137-145},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {Some remarks on the strong limit-point condition of second-order linear differential expressions},
url = {http://eudml.org/doc/21638},
volume = {111},
year = {1986},
}

TY - JOUR
AU - Everitt, William Norrie
TI - Some remarks on the strong limit-point condition of second-order linear differential expressions
JO - Časopis pro pěstování matematiky
PY - 1986
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 111
IS - 2
SP - 137
EP - 145
LA - eng
KW - strong limit point; Dirichlet; second order linear differential equations; selfadjoint extensions; Sturm-Liouville problems
UR - http://eudml.org/doc/21638
ER -

References

top
  1. F. V. Atkinson C. Bennewitz W. N. Everitt, D. Race, The Titchmarsh-Weyl m-coefficient; a survey of properties and applications, (In preparation). 
  2. C. Bennewitz, W. N. Everitt, Some remarks on the Titchmarsh-Weyl m-coefficient, Tгibute to Åke Pleijel (Proceedings of the Pleijel Conference, Uppsala, 1979), 49-108. Uppsala, Sweden; Depaгtтent of Mathematics, University of Uppsala. (1979) 
  3. W. N. Everitt, A note on the Dirichlet condition for second-order differential expressions, Can. J. Math. 28 (1976), 312-320. (1976) Zbl0338.34011MR0430391
  4. W. N. Everitt, A note on an integral inequality, Quaestiones Mathematicae 2 (1978), 461-478. (1978) Zbl0396.26005MR0486760
  5. W. N. Everitt, On the transformation theoгy of ordinary second-order linear symmetric differential equations, Czech. Math. J. 32 (1982), 275-306. (1982) Zbl0532.34016MR0654062
  6. W. N. Everitt M. Giertz, J. B. McLeod, On the strong and weak limit-point classification of second-order differential expressions, Pгoc. London. Math. Soc. (3) 29 (1974), 142-158. (1974) Zbl0302.34022MR0361255
  7. W. IV. Everitt M. Giertz, J. Weidmann, Some remrks on a separation and limit-point criterion of second-order ordinary differential expressions, Math. Ann. 200 (1973), 335-346. (1973) Zbl0235.34045MR0326047
  8. W. N. Everitt, S. G. Halvorsen, On the asymptotic foгm of the Titchmarsh-Weyl m-coefficient, Applicable Analysis 9 (1978), 153-169. (1978) Zbl0406.34047MR0523952
  9. W. N. Everitt, S. D. Wray, On quadratic integral inequalities associated with second-order symmetric differential expressions, Lecture Notes in Mathematics 1032 (1983), 170-223. Вerlin, Ѕpringer-Verlag. (1983) Zbl0556.26006MR0742640
  10. S. G. Halvorsen, [unknown], Personal Communication in 1983. (1983) 
  11. H. Kalf, Remarks on some Dirichlet-type results for semi-bounded Ѕturm-Liouville operators, Math. Ann. 210 (1974), 192-205. (1974) Zbl0297.34019MR0355177
  12. E. C. Titchmarsh, Eigenfunction expansions I, (Oxford University Press: 1962). (1962) Zbl0099.05201MR0176151
  13. H. Weyl, Über gewöhnliche Differentialgleichungen mit Ѕingularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann. 68 (1910), 220-269. (1910) MR1511560

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.