A condition implying boundedness and VMO for a function f

Michelangelo Franciosi

Studia Mathematica (1997)

  • Volume: 123, Issue: 2, page 109-116
  • ISSN: 0039-3223

Abstract

top
Some boundedness and VMO results are proved for a function f integrable on a cube Q 0 , starting from an integral bound.

How to cite

top

Franciosi, Michelangelo. "A condition implying boundedness and VMO for a function f." Studia Mathematica 123.2 (1997): 109-116. <http://eudml.org/doc/216381>.

@article{Franciosi1997,
abstract = {Some boundedness and VMO results are proved for a function f integrable on a cube $Q_0$, starting from an integral bound.},
author = {Franciosi, Michelangelo},
journal = {Studia Mathematica},
keywords = {integral estimates; ; VMO},
language = {eng},
number = {2},
pages = {109-116},
title = {A condition implying boundedness and VMO for a function f},
url = {http://eudml.org/doc/216381},
volume = {123},
year = {1997},
}

TY - JOUR
AU - Franciosi, Michelangelo
TI - A condition implying boundedness and VMO for a function f
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 2
SP - 109
EP - 116
AB - Some boundedness and VMO results are proved for a function f integrable on a cube $Q_0$, starting from an integral bound.
LA - eng
KW - integral estimates; ; VMO
UR - http://eudml.org/doc/216381
ER -

References

top
  1. [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988. Zbl0647.46057
  2. [2] C. Bennett, R. DeVore and R. Sharpley, Weak- L and BMO, Ann. of Math. 113 (1981), 601-611. 
  3. [3] B. Bojarski, Remarks on the stability of reverse Hölder inequalities and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. AI Math. 10 (1985), 89-94. Zbl0582.30016
  4. [4] M. Bramanti and M. C. Cerutti, W 1 , 2 p solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients, Comm. Partial Differential Equations 18 (1993), 1735-1763. Zbl0816.35045
  5. [5] S. Campanato, Proprietà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa 17 (1963), 175-188. 
  6. [6] F. Chiarenza, M. Franciosi and M. Frasca, L p estimates for linear elliptic systems with discontinuous coefficients, Rend. Accad. Naz. Lincei 5 (1994), 27-32. 
  7. [7] F. Chiarenza, M. Frasca and P. Longo, Interior W 2 , p estimates for non divergence elliptic equations with discontinuous coefficients, Ricerche Mat. 40 (1991), 149-168. 
  8. [8] F. Chiarenza, M. Frasca and P. Longo, W 2 , p -solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336 (1993), 841-853. Zbl0818.35023
  9. [9] G. Di Fazio, L p estimates for divergence form elliptic equations with discontinuous coefficients, preprint, Università di Catania. 
  10. [10] M. Franciosi, Weighted rearrangements and higher integrability results, Studia Math. 92 (1989), 131-138. Zbl0677.42021
  11. [11] M. Franciosi, Higher integrability results and Hölder continuity, J. Math. Anal. Appl. 150 (1990), 161-165. Zbl0732.42013
  12. [12] L. G. Gurov and G. Yu. Reshetnyak, On an analogue of the concept of function of bounded mean oscillation, Sibirsk. Mat. Zh. 17 (1976), 540-546 (in Russian). 
  13. [13] C. Herz, The Hardy-Littlewood maximal theorem, in: Symposium on Harmonic Analysis, University of Warwick, 1968. 
  14. [14] T. Iwaniec, On L p -integrability in p.d.e. and quasiregular mappings for large exponents, Ann. Acad. Sci. Fenn. Ser. AI Math. 7 (1982), 301-322. Zbl0505.30011
  15. [15] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. Zbl0102.04302
  16. [16] A. Korenovskii, One refinement of the Gurov-Reshetnyak inequality, preprint, Université de Toulon et du Var. Zbl0920.26014
  17. [17] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. Zbl0319.42006
  18. [18] S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa 19 (1965), 593-608. Zbl0199.44303

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.