A condition implying boundedness and VMO for a function f
Studia Mathematica (1997)
- Volume: 123, Issue: 2, page 109-116
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topFranciosi, Michelangelo. "A condition implying boundedness and VMO for a function f." Studia Mathematica 123.2 (1997): 109-116. <http://eudml.org/doc/216381>.
@article{Franciosi1997,
abstract = {Some boundedness and VMO results are proved for a function f integrable on a cube $Q_0$, starting from an integral bound.},
author = {Franciosi, Michelangelo},
journal = {Studia Mathematica},
keywords = {integral estimates; ; VMO},
language = {eng},
number = {2},
pages = {109-116},
title = {A condition implying boundedness and VMO for a function f},
url = {http://eudml.org/doc/216381},
volume = {123},
year = {1997},
}
TY - JOUR
AU - Franciosi, Michelangelo
TI - A condition implying boundedness and VMO for a function f
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 2
SP - 109
EP - 116
AB - Some boundedness and VMO results are proved for a function f integrable on a cube $Q_0$, starting from an integral bound.
LA - eng
KW - integral estimates; ; VMO
UR - http://eudml.org/doc/216381
ER -
References
top- [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988. Zbl0647.46057
- [2] C. Bennett, R. DeVore and R. Sharpley, Weak- and BMO, Ann. of Math. 113 (1981), 601-611.
- [3] B. Bojarski, Remarks on the stability of reverse Hölder inequalities and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. AI Math. 10 (1985), 89-94. Zbl0582.30016
- [4] M. Bramanti and M. C. Cerutti, solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients, Comm. Partial Differential Equations 18 (1993), 1735-1763. Zbl0816.35045
- [5] S. Campanato, Proprietà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa 17 (1963), 175-188.
- [6] F. Chiarenza, M. Franciosi and M. Frasca, estimates for linear elliptic systems with discontinuous coefficients, Rend. Accad. Naz. Lincei 5 (1994), 27-32.
- [7] F. Chiarenza, M. Frasca and P. Longo, Interior estimates for non divergence elliptic equations with discontinuous coefficients, Ricerche Mat. 40 (1991), 149-168.
- [8] F. Chiarenza, M. Frasca and P. Longo, -solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336 (1993), 841-853. Zbl0818.35023
- [9] G. Di Fazio, estimates for divergence form elliptic equations with discontinuous coefficients, preprint, Università di Catania.
- [10] M. Franciosi, Weighted rearrangements and higher integrability results, Studia Math. 92 (1989), 131-138. Zbl0677.42021
- [11] M. Franciosi, Higher integrability results and Hölder continuity, J. Math. Anal. Appl. 150 (1990), 161-165. Zbl0732.42013
- [12] L. G. Gurov and G. Yu. Reshetnyak, On an analogue of the concept of function of bounded mean oscillation, Sibirsk. Mat. Zh. 17 (1976), 540-546 (in Russian).
- [13] C. Herz, The Hardy-Littlewood maximal theorem, in: Symposium on Harmonic Analysis, University of Warwick, 1968.
- [14] T. Iwaniec, On -integrability in p.d.e. and quasiregular mappings for large exponents, Ann. Acad. Sci. Fenn. Ser. AI Math. 7 (1982), 301-322. Zbl0505.30011
- [15] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. Zbl0102.04302
- [16] A. Korenovskii, One refinement of the Gurov-Reshetnyak inequality, preprint, Université de Toulon et du Var. Zbl0920.26014
- [17] D. Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. Zbl0319.42006
- [18] S. Spanne, Some function spaces defined using the mean oscillation over cubes, Ann. Scuola Norm. Sup. Pisa 19 (1965), 593-608. Zbl0199.44303
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.