Some function spaces defined using the mean oscillation over cubes

Sven Spanne

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1965)

  • Volume: 19, Issue: 4, page 593-608
  • ISSN: 0391-173X

How to cite

top

Spanne, Sven. "Some function spaces defined using the mean oscillation over cubes." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.4 (1965): 593-608. <http://eudml.org/doc/83366>.

@article{Spanne1965,
author = {Spanne, Sven},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {functional analysis},
language = {eng},
number = {4},
pages = {593-608},
publisher = {Scuola normale superiore},
title = {Some function spaces defined using the mean oscillation over cubes},
url = {http://eudml.org/doc/83366},
volume = {19},
year = {1965},
}

TY - JOUR
AU - Spanne, Sven
TI - Some function spaces defined using the mean oscillation over cubes
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1965
PB - Scuola normale superiore
VL - 19
IS - 4
SP - 593
EP - 608
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/83366
ER -

Citations in EuDML Documents

top
  1. Rahim Rzaev, Lala Aliyeva, On local properties of functions and singular integrals in terms of the mean oscillation
  2. Josef Daněček, Eugen Viszus, A note on regularity for nonlinear elliptic systems
  3. Eiichi Nakai, Pointwise multipliers for functions of weighted bounded mean oscillation
  4. Hugo Aimar, Raquel Crescimbeni, On one-sided BMO and Lipschitz functions
  5. Hugo Aimar, Rearrangement and continuity properties of B M O ( φ ) functions on spaces of homogeneous type
  6. Hugo Aimar, Liliana Forzani, On continuity properties of functions with conditions on the mean oscillation
  7. Michelangelo Franciosi, A condition implying boundedness and VMO for a function f
  8. Eiichi Nakai, Pointwise multipliers on weighted BMO spaces
  9. Sergio Campanato, Guido Stampacchia, Sulle maggiorazioni in L p nella teoria delle equazioni ellittiche.
  10. Josef Daněček, Eugen Viszus, L 2 , λ -regularity for minima of variational integrals

NotesEmbed ?

top

You must be logged in to post comments.