Some function spaces defined using the mean oscillation over cubes

Sven Spanne

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1965)

  • Volume: 19, Issue: 4, page 593-608
  • ISSN: 0391-173X

How to cite

top

Spanne, Sven. "Some function spaces defined using the mean oscillation over cubes." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.4 (1965): 593-608. <http://eudml.org/doc/83366>.

@article{Spanne1965,
author = {Spanne, Sven},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {functional analysis},
language = {eng},
number = {4},
pages = {593-608},
publisher = {Scuola normale superiore},
title = {Some function spaces defined using the mean oscillation over cubes},
url = {http://eudml.org/doc/83366},
volume = {19},
year = {1965},
}

TY - JOUR
AU - Spanne, Sven
TI - Some function spaces defined using the mean oscillation over cubes
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1965
PB - Scuola normale superiore
VL - 19
IS - 4
SP - 593
EP - 608
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/83366
ER -

Citations in EuDML Documents

top
  1. Rahim Rzaev, Lala Aliyeva, On local properties of functions and singular integrals in terms of the mean oscillation
  2. Josef Daněček, Eugen Viszus, A note on regularity for nonlinear elliptic systems
  3. Eiichi Nakai, Pointwise multipliers for functions of weighted bounded mean oscillation
  4. Hugo Aimar, Raquel Crescimbeni, On one-sided BMO and Lipschitz functions
  5. Hugo Aimar, Rearrangement and continuity properties of B M O ( φ ) functions on spaces of homogeneous type
  6. Hugo Aimar, Liliana Forzani, On continuity properties of functions with conditions on the mean oscillation
  7. Michelangelo Franciosi, A condition implying boundedness and VMO for a function f
  8. Eiichi Nakai, Pointwise multipliers on weighted BMO spaces
  9. Sergio Campanato, Guido Stampacchia, Sulle maggiorazioni in L p nella teoria delle equazioni ellittiche.
  10. Josef Daněček, Eugen Viszus, L 2 , λ -regularity for minima of variational integrals

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.