A new Taylor type formula and extensions for asymptotically developable functions
Studia Mathematica (1997)
- Volume: 123, Issue: 2, page 151-163
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topZurro, M.. "A new Taylor type formula and $C^∞$ extensions for asymptotically developable functions." Studia Mathematica 123.2 (1997): 151-163. <http://eudml.org/doc/216384>.
@article{Zurro1997,
abstract = {The paper studies the relation between asymptotically developable functions in several complex variables and their extensions as functions of real variables. A new Taylor type formula with integral remainder in several variables is an essential tool. We prove that strongly asymptotically developable functions defined on polysectors have $C^∞$ extensions from any subpolysector; the Gevrey case is included.},
author = {Zurro, M.},
journal = {Studia Mathematica},
keywords = {Taylor formula; asymptotically developable function; extension; Gevrey function},
language = {eng},
number = {2},
pages = {151-163},
title = {A new Taylor type formula and $C^∞$ extensions for asymptotically developable functions},
url = {http://eudml.org/doc/216384},
volume = {123},
year = {1997},
}
TY - JOUR
AU - Zurro, M.
TI - A new Taylor type formula and $C^∞$ extensions for asymptotically developable functions
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 2
SP - 151
EP - 163
AB - The paper studies the relation between asymptotically developable functions in several complex variables and their extensions as functions of real variables. A new Taylor type formula with integral remainder in several variables is an essential tool. We prove that strongly asymptotically developable functions defined on polysectors have $C^∞$ extensions from any subpolysector; the Gevrey case is included.
LA - eng
KW - Taylor formula; asymptotically developable function; extension; Gevrey function
UR - http://eudml.org/doc/216384
ER -
References
top- [BBMT] J. Bonet, R. W. Braun, R. Meise and B. A. Taylor, Whitney's extension theorem for nonquasianalytic classes of ultradifferentiable functions, Studia Math. 99 (1991), 155-184.
- [B] J. Bruna, An extension theorem of Whitney type for non quasi-analytic classes of functions, J. London Math. Soc. (2) 22 (1980), 495-505.
- [GS] R. Gérard et Y. Sibuya, Etude de certains systèmes de Pfaff avec singularités, in: Lecture Notes in Math. 712, Springer, 1979, 131-288.
- [Ha] Y. Haraoka, Theorems of Sibuya-Malgrange type for Gevrey functions of several variables, Funkcial. Ekvac. 32 (1989), 365-388.
- [He] J. A. Hernández, Desarrollos asintóticos en polisectores. Problemas de existencia y unicidad, Ph.D. Thesis, University of Valladodid, 1994.
- [K] J. M. Kantor, Classes non-quasi-analytiques et décomposition des supports des ultradistributions, An. Acad. Brasil. Ciênc. 44 (1972), 171-180.
- [Mj] H. Majima, Asymptotic Analysis for Integrable Connections with Irregular Singular Points, Lecture Notes in Math. 1075, Springer, 1984.
- [Mj1] H. Majima, On the representation of solutions of completely integrable Pfaffian systems with irregular singular points, Proc. Sem. at R.I.M.S., Kyoto University, number 483 (1981).
- [M] B. Malgrange, Remarques sur les équations différentielles à points singuliers irréguliers, in: Équations différentielles et systèmes de Pfaff dans le champ complexe, Lecture Notes in Math. 712, Springer, Berlin, 1979, 77-86.
- [Wa] W. R. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Krieger, 1976.
- [W1] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89.
- [Wi2] H. Whitney, Functions differentiable on the boundaries of regions, Ann. of Math. 35 (1934), 482-485.
- [Z] M. A. Zurro, Summability au plus petit terme, Studia Math. 113 (1995), 197-198.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.