# Whitney's extension theorem for nonquasianalytic classes of ultradifferentiable functions

J. Bonet; R. Braun; R. Meise; B. Taylor

Studia Mathematica (1991)

- Volume: 99, Issue: 2, page 155-184
- ISSN: 0039-3223

## Access Full Article

top## How to cite

topBonet, J., et al. "Whitney's extension theorem for nonquasianalytic classes of ultradifferentiable functions." Studia Mathematica 99.2 (1991): 155-184. <http://eudml.org/doc/219053>.

@article{Bonet1991,

author = {Bonet, J., Braun, R., Meise, R., Taylor, B.},

journal = {Studia Mathematica},

keywords = {nonquasi-analytic class; Gevrey classes; Borel's theorem; cut-off functions; weight function; Whitney's extension theorem; space of Whitney jets; Hörmander’s solution of the -problem; Whitney’s property ; -ultradifferentiable functions of Beurling resp. Roumieu type},

language = {eng},

number = {2},

pages = {155-184},

title = {Whitney's extension theorem for nonquasianalytic classes of ultradifferentiable functions},

url = {http://eudml.org/doc/219053},

volume = {99},

year = {1991},

}

TY - JOUR

AU - Bonet, J.

AU - Braun, R.

AU - Meise, R.

AU - Taylor, B.

TI - Whitney's extension theorem for nonquasianalytic classes of ultradifferentiable functions

JO - Studia Mathematica

PY - 1991

VL - 99

IS - 2

SP - 155

EP - 184

LA - eng

KW - nonquasi-analytic class; Gevrey classes; Borel's theorem; cut-off functions; weight function; Whitney's extension theorem; space of Whitney jets; Hörmander’s solution of the -problem; Whitney’s property ; -ultradifferentiable functions of Beurling resp. Roumieu type

UR - http://eudml.org/doc/219053

ER -

## Citations in EuDML Documents

top- M. Zurro, A new Taylor type formula and ${C}^{\infty}$ extensions for asymptotically developable functions
- Vincent Thilliez, Prolongement dans des classes ultradifférentiables et propriétés de régularité des compacts de ${\mathbb{R}}^{n}$
- Vincent Thilliez, Division et extension dans des classes de Carleman de fonctions holomorphes
- Todor Gramchev, Georgi Popov, Nekhoroshev type estimates for billiard ball maps

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.