Spectral sets
Studia Mathematica (1997)
- Volume: 123, Issue: 2, page 97-107
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. Zbl0271.46039
- [2] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, London, 1978. Zbl0384.47001
- [3] N. Dunford, Spectral theory I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. Zbl0063.01185
- [4] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New York, 1957.
- [5] J. E. Galé, Weakly compact homomorphisms and semigroups in Banach algebras, J. London Math. Soc. 45 (1992), 113-125. Zbl0699.46024
- [6] H. Heuser, Functional Analysis, Wiley, New York, 1982.
- [7] M. A. Kaashoek and T. T. West, Locally Compact Semi-Algebras with Applications to Spectral Theory of Positive Operators, North-Holland Math. Stud. 9, North-Holland, Amsterdam, 1974. Zbl0288.46043
- [8] J. J. Koliha, Convergence of an operator series, Aequationes Math. 16 (1977), 31-35. Zbl0376.47011
- [9] J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), 3417-3424. Zbl0864.46028
- [10] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159-175. Zbl0657.47038
- [11] M. Mbekhta, Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.
- [12] C. Schmoeger, On isolated points of the spectrum of a bounded linear operator, ibid. 117 (1993), 715-719. Zbl0780.47019
- [13] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New York, 1980. Zbl0501.46003