Spectral sets

J. Koliha

Studia Mathematica (1997)

  • Volume: 123, Issue: 2, page 97-107
  • ISSN: 0039-3223

Abstract

top
The paper studies spectral sets of elements of Banach algebras as the zeros of holomorphic functions and describes them in terms of existence of idempotents. A new decomposition theorem characterizing spectral sets is obtained for bounded linear operators.

How to cite

top

Koliha, J.. "Spectral sets." Studia Mathematica 123.2 (1997): 97-107. <http://eudml.org/doc/216388>.

@article{Koliha1997,
abstract = {The paper studies spectral sets of elements of Banach algebras as the zeros of holomorphic functions and describes them in terms of existence of idempotents. A new decomposition theorem characterizing spectral sets is obtained for bounded linear operators.},
author = {Koliha, J.},
journal = {Studia Mathematica},
keywords = {spectral sets; Banach algebras; zeros of holomorphic functions; existence of idempotents},
language = {eng},
number = {2},
pages = {97-107},
title = {Spectral sets},
url = {http://eudml.org/doc/216388},
volume = {123},
year = {1997},
}

TY - JOUR
AU - Koliha, J.
TI - Spectral sets
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 2
SP - 97
EP - 107
AB - The paper studies spectral sets of elements of Banach algebras as the zeros of holomorphic functions and describes them in terms of existence of idempotents. A new decomposition theorem characterizing spectral sets is obtained for bounded linear operators.
LA - eng
KW - spectral sets; Banach algebras; zeros of holomorphic functions; existence of idempotents
UR - http://eudml.org/doc/216388
ER -

References

top
  1. [1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. Zbl0271.46039
  2. [2] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, London, 1978. Zbl0384.47001
  3. [3] N. Dunford, Spectral theory I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217. Zbl0063.01185
  4. [4] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New York, 1957. 
  5. [5] J. E. Galé, Weakly compact homomorphisms and semigroups in Banach algebras, J. London Math. Soc. 45 (1992), 113-125. Zbl0699.46024
  6. [6] H. Heuser, Functional Analysis, Wiley, New York, 1982. 
  7. [7] M. A. Kaashoek and T. T. West, Locally Compact Semi-Algebras with Applications to Spectral Theory of Positive Operators, North-Holland Math. Stud. 9, North-Holland, Amsterdam, 1974. Zbl0288.46043
  8. [8] J. J. Koliha, Convergence of an operator series, Aequationes Math. 16 (1977), 31-35. Zbl0376.47011
  9. [9] J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), 3417-3424. Zbl0864.46028
  10. [10] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159-175. Zbl0657.47038
  11. [11] M. Mbekhta, Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631. 
  12. [12] C. Schmoeger, On isolated points of the spectrum of a bounded linear operator, ibid. 117 (1993), 715-719. Zbl0780.47019
  13. [13] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New York, 1980. Zbl0501.46003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.