A Phragmén-Lindelöf type quasi-analyticity principle

Grzegorz Łysik

Studia Mathematica (1997)

  • Volume: 123, Issue: 3, page 217-234
  • ISSN: 0039-3223

Abstract

top
Quasi-analyticity theorems of Phragmén-Lindelöf type for holomorphic functions of exponential type on a half plane are stated and proved. Spaces of Laplace distributions (ultradistributions) on ℝ are studied and their boundary value representation is given. A generalization of the Painlevé theorem is proved.

How to cite

top

Łysik, Grzegorz. "A Phragmén-Lindelöf type quasi-analyticity principle." Studia Mathematica 123.3 (1997): 217-234. <http://eudml.org/doc/216390>.

@article{Łysik1997,
abstract = {Quasi-analyticity theorems of Phragmén-Lindelöf type for holomorphic functions of exponential type on a half plane are stated and proved. Spaces of Laplace distributions (ultradistributions) on ℝ are studied and their boundary value representation is given. A generalization of the Painlevé theorem is proved.},
author = {Łysik, Grzegorz},
journal = {Studia Mathematica},
keywords = {quasi-analyticity; Laplace distributions; Laplace ultradistributions; boundary values},
language = {eng},
number = {3},
pages = {217-234},
title = {A Phragmén-Lindelöf type quasi-analyticity principle},
url = {http://eudml.org/doc/216390},
volume = {123},
year = {1997},
}

TY - JOUR
AU - Łysik, Grzegorz
TI - A Phragmén-Lindelöf type quasi-analyticity principle
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 3
SP - 217
EP - 234
AB - Quasi-analyticity theorems of Phragmén-Lindelöf type for holomorphic functions of exponential type on a half plane are stated and proved. Spaces of Laplace distributions (ultradistributions) on ℝ are studied and their boundary value representation is given. A generalization of the Painlevé theorem is proved.
LA - eng
KW - quasi-analyticity; Laplace distributions; Laplace ultradistributions; boundary values
UR - http://eudml.org/doc/216390
ER -

References

top
  1. [H] E. Hille, Analytic Function Theory, Vol. 2, Chelsea, New York, 1962. Zbl0102.29401
  2. [K] H. Komatsu, Ultradistributions, I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo 20 (1973), 25-105. Zbl0258.46039
  3. [Ł1] G. Łysik, Generalized analytic functions and a strong quasi-analyticity principle, Dissertationes Math. 340 (1995), 195-200. Zbl0882.46018
  4. [Ł2] G. Łysik, Laplace ultradistributions on a half line and a strong quasi-analyticity principle, Ann. Polon. Math. 63 (1996), 13-33. Zbl0843.46025
  5. [M] S. Mandelbrojt, Séries adhérentes, régularisation des suites, applications, Gauthier-Villars, Paris, 1952. Zbl0048.05203
  6. [R] C. Roumieu, Sur quelques extensions de la notion de distribution, Ann. Sci. École Norm. Sup. 77 (1960), 41-121. Zbl0104.33403
  7. [SZ] Z. Szmydt and B. Ziemian, The Laplace distributions on + n , submitted to J. Math. Sci. Univ. Tokyo. 
  8. [T] J. C. Tougeron, Gevrey expansions and applications, preprint, University of Toronto, 1991. 
  9. [W] D. V. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, N.J., 1946. Zbl0060.24801
  10. [Z] A. H. Zemanian, Generalized Integral Transformations, Interscience, 1969. Zbl0181.12701

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.