A distributional representation of strip analytic functions.
We show that Whitney?s approximation theorem holds in a general setting including spaces of (ultra)differentiable functions and ultradistributions. This is used to obtain real analytic modifications for differentiable functions including optimal estimates. Finally, a surjectivity criterion for continuous linear operators between Fréchet sheaves is deduced, which can be applied to the boundary value problem for holomorphic functions and to convolution operators in spaces of ultradifferentiable functions...
Quasi-analyticity theorems of Phragmén-Lindelöf type for holomorphic functions of exponential type on a half plane are stated and proved. Spaces of Laplace distributions (ultradistributions) on ℝ are studied and their boundary value representation is given. A generalization of the Painlevé theorem is proved.
A formal solution of a nonlinear equation P(D)u = g(u) in 2 variables is constructed using the Laplace transformation and a convolution equation. We assume some conditions on the characteristic set Char P.
Nous dirons qu’un faisceau de groupes abéliens sur un espace topologique est souple si, étant un ouvert de , et des fermés de , toute section de sur à support dans est somme de sections à support dans et . Soit une variété analytique réelle, son fibré cotangent en sphères, le faisceau sur des microfonctions qui proviennent localement sur , de distributions. Nous montrons que le faisceau est souple. En particulier le faisceau sur , quotient des distributions par...