Convergence of conditional expectations for unbounded closed convex random sets

Charles Castaing; Fatima Ezzaki; Christian Hess

Studia Mathematica (1997)

  • Volume: 124, Issue: 2, page 133-148
  • ISSN: 0039-3223

Abstract

top
We discuss here several types of convergence of conditional expectations for unbounded closed convex random sets of the form E n X n where ( n ) is a decreasing sequence of sub-σ-algebras and ( X n ) is a sequence of closed convex random sets in a separable Banach space.

How to cite

top

Castaing, Charles, Ezzaki, Fatima, and Hess, Christian. "Convergence of conditional expectations for unbounded closed convex random sets." Studia Mathematica 124.2 (1997): 133-148. <http://eudml.org/doc/216402>.

@article{Castaing1997,
abstract = {We discuss here several types of convergence of conditional expectations for unbounded closed convex random sets of the form $E^\{ℬ_n\}X_n$ where $(ℬ_n)$ is a decreasing sequence of sub-σ-algebras and $(X_n)$ is a sequence of closed convex random sets in a separable Banach space.},
author = {Castaing, Charles, Ezzaki, Fatima, Hess, Christian},
journal = {Studia Mathematica},
keywords = {set-valued functions; selections; integration of set-valued functions},
language = {eng},
number = {2},
pages = {133-148},
title = {Convergence of conditional expectations for unbounded closed convex random sets},
url = {http://eudml.org/doc/216402},
volume = {124},
year = {1997},
}

TY - JOUR
AU - Castaing, Charles
AU - Ezzaki, Fatima
AU - Hess, Christian
TI - Convergence of conditional expectations for unbounded closed convex random sets
JO - Studia Mathematica
PY - 1997
VL - 124
IS - 2
SP - 133
EP - 148
AB - We discuss here several types of convergence of conditional expectations for unbounded closed convex random sets of the form $E^{ℬ_n}X_n$ where $(ℬ_n)$ is a decreasing sequence of sub-σ-algebras and $(X_n)$ is a sequence of closed convex random sets in a separable Banach space.
LA - eng
KW - set-valued functions; selections; integration of set-valued functions
UR - http://eudml.org/doc/216402
ER -

References

top
  1. [A] H. Attouch, Variational Convergence for Functions and Operators, Appl. Math. Ser., Pitman, Boston, 1984. Zbl0561.49012
  2. [CE1] C. Castaing and F. Ezzaki, Variational inequalities for integrand martingales and additive random sequences, Acta Math. Vietnam. 18 (1993), 137-171. Zbl0886.60023
  3. [CE2] C. Castaing and F. Ezzaki, SLLN for convex random sets and random lower semicontinuous integrands, preprint, Département de Mathématiques, Université Montpellier II, 1995. Zbl0905.60019
  4. [CV] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, 1977. Zbl0346.46038
  5. [Ch] A. Choukairi-Dini, Contribution à l'étude des martingales et au lemme de Fatou multivoque, Thèse, Université Montpellier II, 1988. 
  6. [Co] J. Couvreux, Etude de problèmes de convergence et d'approximation de fonctionnelles intégrales et d'espérances conditionnelles multivoques, Thèse, Université Paris-Dauphine, 1995. 
  7. [Ez1] F. Ezzaki, Contributions aux problèmes de convergence des suites adaptées et des ensembles aléatoires, Thèse, Université Montpellier II, 1993. 
  8. [Ez2] F. Ezzaki, A general dominated convergence theorem for unbounded random sets, Bull. Polish Acad. Sci. Math. 44 (1996), 353-361. Zbl0879.60049
  9. [He1] C. Hess, Lemme de Fatou et convergence dominée pour les ensembles aléatoires non bornés et des intégrandes, Sém. Analyse Convexe Montpellier, exp. no. 8, 1986. 
  10. [He2] C. Hess, Convergence of conditional expectations for unbounded random sets, integrands, and integral functionals, Math. Oper. Res. 16 (1991), 627-649. Zbl0744.28010
  11. [He3] C. Hess, Mesurabilité, convergence et approximation des multifonctions à valeurs dans un e.l.c.s., Sém. Analyse Convexe Montpellier, exp. no. 9, 1985. 
  12. [He4] C. Hess, Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl. 153 (1990), 226-229. Zbl0748.47046
  13. [He5] C. Hess, Multivalued strong law of large numbers in the slice topology. Application to integrands, Set-Valued Anal. 2 (1994), 183-205. 
  14. [Hi1] F. Hiai, Multivalued conditional expectations, multivalued Radon-Nikodym theorems, integral representation of additive operators and multivalued strong laws of large numbers, preprint, Conference of Catania, 1983. 
  15. [Hi2] F. Hiai, Convergence of conditional expectations and strong laws of large numbers for multivalued random variables, Trans. Amer. Math. Soc. 291 (1985), 613-627. Zbl0583.60007
  16. [HU] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182. Zbl0368.60006
  17. [Mo] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. in Math. 3 (1969), 151-155. 
  18. [Ne] J. Neveu, Martingales à temps discret, Masson, 1972. 
  19. [SZ] D. Szynal and W. Zięba, On some characterization of almost sure convergence, Bull. Polish Acad. Sci. Math. 34 (1986), 635-642. Zbl0615.60027
  20. [We] R. Wets, Convergence of convex functions, variational inequalities and convex optimization problems, in: Variational Inequalities and Complementarity Problems, R. W. Cottle, F. Giannessi, and J. L. Lions (eds.), Wiley, Chichester, 1980, 375-403. 
  21. [Zi] W. Zięba, On the L 1 convergence of conditional amarts, J. Multivariate Anal. 26 (1988), 104-110. Zbl0649.60040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.