Besov spaces on symmetric manifolds—the atomic decomposition

Leszek Skrzypczak

Studia Mathematica (1997)

  • Volume: 124, Issue: 3, page 215-238
  • ISSN: 0039-3223

Abstract

top
We give the atomic decomposition of the inhomogeneous Besov spaces defined on symmetric Riemannian spaces of noncompact type. As an application we get a theorem of Bernstein type for the Helgason-Fourier transform.

How to cite

top

Skrzypczak, Leszek. "Besov spaces on symmetric manifolds—the atomic decomposition." Studia Mathematica 124.3 (1997): 215-238. <http://eudml.org/doc/216410>.

@article{Skrzypczak1997,
abstract = {We give the atomic decomposition of the inhomogeneous Besov spaces defined on symmetric Riemannian spaces of noncompact type. As an application we get a theorem of Bernstein type for the Helgason-Fourier transform.},
author = {Skrzypczak, Leszek},
journal = {Studia Mathematica},
keywords = {atomic decomposition; inhomogeneous Besov spaces; symmetric Riemannian spaces of noncompact type; theorem of Bernstein type; Helgason-Fourier transform},
language = {eng},
number = {3},
pages = {215-238},
title = {Besov spaces on symmetric manifolds—the atomic decomposition},
url = {http://eudml.org/doc/216410},
volume = {124},
year = {1997},
}

TY - JOUR
AU - Skrzypczak, Leszek
TI - Besov spaces on symmetric manifolds—the atomic decomposition
JO - Studia Mathematica
PY - 1997
VL - 124
IS - 3
SP - 215
EP - 238
AB - We give the atomic decomposition of the inhomogeneous Besov spaces defined on symmetric Riemannian spaces of noncompact type. As an application we get a theorem of Bernstein type for the Helgason-Fourier transform.
LA - eng
KW - atomic decomposition; inhomogeneous Besov spaces; symmetric Riemannian spaces of noncompact type; theorem of Bernstein type; Helgason-Fourier transform
UR - http://eudml.org/doc/216410
ER -

References

top
  1. [1] J.-P. Anker, L p -Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. of Math. 132 (1990), 597-628. Zbl0741.43009
  2. [2] J.-P. Anker, The spherical Fourier transform of rapidly decreasing functions. A simple proof of a characterization due to Harish-Chandra, Helgason, Trombi, and Varadarajan, J. Funct. Anal. 96 (1991), 331-349. Zbl0732.43006
  3. [3] H. Q. Bui, Representation theorems and atomic decomposition of Besov spaces, Math. Nachr. 132 (1987), 301-311. Zbl0639.46037
  4. [4] M. Eguchi, Asymptotic expansions of Eisenstein integrals and Fourier transform on symmetric spaces, J. Funct. Anal. 34 (1979), 164-216. 
  5. [5] H. G. Feichtinger and K. Gröchenig, A unified approach to atomic decompositions via integrable group representations, in: Function Spaces and Applications, Proc. Conf. Lund 1986, Lecture Notes in Math. 1302, Springer, 1988, 52-73. Zbl0658.22007
  6. [6] H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal. 86 (1989), 307-340; II, Monatsh. Math. 108 (1989), 129-148. Zbl0691.46011
  7. [7] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799. Zbl0551.46018
  8. [8] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), 34-170. 
  9. [9] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., 1991. Zbl0757.42006
  10. [10] R. Gangolli and V. S. Varadarajan, Harmonic Analysis of Spherical Functions on Real Reductive Groups, Ergeb. Math. Grenzgeb. 101, Springer, 1988. Zbl0675.43004
  11. [11] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978. Zbl0451.53038
  12. [12] S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions, Academic Press, 1984. Zbl0543.58001
  13. [13] S. Helgason, The surjectivity of invariant differential operators on symmetric spaces I, Ann. of Math. 98 (1973), 451-480. Zbl0274.43013
  14. [14] T. Kawazoe, Atomic Hardy spaces on semisimple Lie groups, in: Non-Commutative Harmonic Analysis and Lie Groups, Proc. Conf. Marseille 1985, Lecture Notes in Math. 1243, Springer, 1987, 189-197. 
  15. [15] R. A. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math. 33 (1979), 271-309. Zbl0431.46019
  16. [16] L. Skrzypczak, Some equivalent norms in Sobolev and Besov spaces on symmetric manifolds, J. London Math. Soc. 53 (1996), 569-581. Zbl0857.46023
  17. [17] L. Skrzypczak, Vector-valued Fourier multipliers on symmetric spaces of the noncompact type, Monatsh. Math. 119 (1995), 99-123. Zbl0828.43009
  18. [18] H. Triebel, Atomic decomposition of F p s , q spaces. Applications to exotic pseudodifferential and Fourier integral operators, Math. Nachr. 144 (1989), 189-222. Zbl0766.46020
  19. [19] H. Triebel, How to measure smoothness of distributions on Riemannian symmetric manifolds and Lie groups?, Z. Anal. Anwendungen 7 (1988), 471-480. Zbl0685.46020
  20. [20] H. Triebel, Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds, Ark. Mat. 24 (1986), 300-337. Zbl0664.46026
  21. [21] H. Triebel, Theory of Function Spaces II, Birkhäuser, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.