Function spaces and spectra of elliptic operators on a class of hyperbolic manifolds

Hans Triebel

Studia Mathematica (1999)

  • Volume: 134, Issue: 2, page 179-202
  • ISSN: 0039-3223

Abstract

top
The paper deals with quarkonial decompositions and entropy numbers in weighted function spaces on hyperbolic manifolds. We use these results to develop a spectral theory of related Schrödinger operators in these hyperbolic worlds.

How to cite

top

Triebel, Hans. "Function spaces and spectra of elliptic operators on a class of hyperbolic manifolds." Studia Mathematica 134.2 (1999): 179-202. <http://eudml.org/doc/216631>.

@article{Triebel1999,
abstract = {The paper deals with quarkonial decompositions and entropy numbers in weighted function spaces on hyperbolic manifolds. We use these results to develop a spectral theory of related Schrödinger operators in these hyperbolic worlds.},
author = {Triebel, Hans},
journal = {Studia Mathematica},
keywords = {quarkonial decompositions; entropy numbers; weighted function spaces on hyperbolic manifolds; Schrödinger operators},
language = {eng},
number = {2},
pages = {179-202},
title = {Function spaces and spectra of elliptic operators on a class of hyperbolic manifolds},
url = {http://eudml.org/doc/216631},
volume = {134},
year = {1999},
}

TY - JOUR
AU - Triebel, Hans
TI - Function spaces and spectra of elliptic operators on a class of hyperbolic manifolds
JO - Studia Mathematica
PY - 1999
VL - 134
IS - 2
SP - 179
EP - 202
AB - The paper deals with quarkonial decompositions and entropy numbers in weighted function spaces on hyperbolic manifolds. We use these results to develop a spectral theory of related Schrödinger operators in these hyperbolic worlds.
LA - eng
KW - quarkonial decompositions; entropy numbers; weighted function spaces on hyperbolic manifolds; Schrödinger operators
UR - http://eudml.org/doc/216631
ER -

References

top
  1. [Ber98] G. Berger, Eigenvalue distribution of elliptic operators of second order with Neumann boundary conditions in a snowflake domain, preprint, Leipzig, 1998. 
  2. [Dav89] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1989. 
  3. [EdE87] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford Univ. Press, 1987. 
  4. [ET96] D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators, Cambridge Univ. Press, 1996. Zbl0865.46020
  5. [EvH93] W. D. Evans and D. J. Harris, Fractals, trees and the Neumann Laplacian, Math. Ann. 296 (1993), 493-527. Zbl0799.46041
  6. [Fal85] K. J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, 1985. 
  7. [Fal90] K. J. Falconer, Fractal Geometry, Wiley, Chichester, 1990. 
  8. [Har98] D. Haroske, Some logarithmic function spaces, entropy numbers, applications to spectral theory, Dissertationes Math. 373 (1998). Zbl0906.46027
  9. [Har99] D. Haroske, Embeddings of some weighted function spaces on n ; entropy and approximation numbers, preprint, Jena, 1998. 
  10. [HaT94] D. Haroske and H. Triebel, Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators I, Math. Nachr. 167 (1994), 131-156. Zbl0829.46019
  11. [HaT94*] D. Haroske and H. Triebel, Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators II, ibid. 168 (1994), 109-137. Zbl0829.46020
  12. [HeL97] C. Q. He and M. L. Lapidus, Generalized Minkowski content, spectrum of fractal drums, fractal strings and the Riemann zeta-function, Mem. Amer. Math. Soc. 608 (1997). 
  13. [Lap91] M. L. Lapidus, Fractal drums, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc. 325 (1991), 465-529. Zbl0741.35048
  14. [Mat95] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, 1995. 
  15. [RuS96] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytzkij Operators, and Nonlinear Partial Differential Equations, de Gruyter, Berlin, 1996. 
  16. [Shu92] M. A. Shubin, Spectral theory of elliptic operators on non-compact manifolds, Astérisque 207 (1992), 35-108. Zbl0793.58039
  17. [Skr96] L. Skrzypczak, Heat semi-group and function spaces on symmetric spaces of non-compact type, Z. Anal. Anwendungen 15 (1996), 881-899. Zbl0868.46025
  18. [Skr97] L. Skrzypczak, Besov spaces on symmetric manifolds-the atomic decomposition, Studia Math. 124 (1997), 215-238. Zbl0896.46024
  19. [Skr98] L. Skrzypczak, Atomic decompositions on manifolds with bounded geometry, Forum Math. 10 (1998), 19-38. Zbl0907.46031
  20. [Skr98*] L. Skrzypczak, Mapping properties of pseudodifferential operators on manifolds with bounded geometry, J. London Math. Soc., to appear. 
  21. [Stu93] K.-T. Sturm, On the L p -spectrum of uniformly elliptc operators on Riemannian manifolds, J. Funct. Anal. 118 (1993), 442-453. 
  22. [Tay89] M. E. Taylor, L p -estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), 773-793. 
  23. [Tri83] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983. 
  24. [Tri86] H. Triebel, Spaces of Besov-Hardy-Sobolev type on complete Riemannian manfolds, Ark. Mat. 24 (1986), 299-337. Zbl0664.46026
  25. [Tri87] H. Triebel, Characterizations of function spaces on a complete Riemannian manifold with bounded geometry, Math. Nachr. 130 (1987), 312-346. 
  26. [Tri88] H. Triebel, On a class of weighted function spaces and related pseudodifferential operators, Studia Math. 90 (1988), 37-68. 
  27. [Tri92] H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992. 
  28. [Tri97] H. Triebel, Fractals and Spectra, Birkhäuser, Basel, 1997. 
  29. [Tri98] H. Triebel, Decompositions of function spaces, in: Progress in Nonlinear Differential Equations Appl. 35, Birkhäuser, 1999, 691-730. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.