# On the ${L}_{1}$-convergence of Fourier series

Studia Mathematica (1997)

- Volume: 125, Issue: 2, page 161-174
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topFridli, S.. "On the $L_1$-convergence of Fourier series." Studia Mathematica 125.2 (1997): 161-174. <http://eudml.org/doc/216429>.

@article{Fridli1997,

abstract = {Since the trigonometric Fourier series of an integrable function does not necessarily converge to the function in the mean, several additional conditions have been devised to guarantee the convergence. For instance, sufficient conditions can be constructed by using the Fourier coefficients or the integral modulus of the corresponding function. In this paper we give a Hardy-Karamata type Tauberian condition on the Fourier coefficients and prove that it implies the convergence of the Fourier series in integral norm, almost everywhere, and if the function itself is in the real Hardy space, then also in the Hardy norm. We also compare it to the previously known conditions.},

author = {Fridli, S.},

journal = {Studia Mathematica},

keywords = {Fourier series; $L_1$-convergence; a.e. convergence; Hardy-Karamata type Tauberian condition; Fourier coefficients; convergence; integral norm; Hardy norm; lacunary Fourier series},

language = {eng},

number = {2},

pages = {161-174},

title = {On the $L_1$-convergence of Fourier series},

url = {http://eudml.org/doc/216429},

volume = {125},

year = {1997},

}

TY - JOUR

AU - Fridli, S.

TI - On the $L_1$-convergence of Fourier series

JO - Studia Mathematica

PY - 1997

VL - 125

IS - 2

SP - 161

EP - 174

AB - Since the trigonometric Fourier series of an integrable function does not necessarily converge to the function in the mean, several additional conditions have been devised to guarantee the convergence. For instance, sufficient conditions can be constructed by using the Fourier coefficients or the integral modulus of the corresponding function. In this paper we give a Hardy-Karamata type Tauberian condition on the Fourier coefficients and prove that it implies the convergence of the Fourier series in integral norm, almost everywhere, and if the function itself is in the real Hardy space, then also in the Hardy norm. We also compare it to the previously known conditions.

LA - eng

KW - Fourier series; $L_1$-convergence; a.e. convergence; Hardy-Karamata type Tauberian condition; Fourier coefficients; convergence; integral norm; Hardy norm; lacunary Fourier series

UR - http://eudml.org/doc/216429

ER -

## References

top- [1] B. Aubertin and J. J. F. Fournier, Integrability theorems for trigonometric series, Studia Math. 107 (1993), 33-59. Zbl0809.42001
- [2] R. Bojanic and Č. Stanojević, A class of ${L}^{1}$ convergence, Trans. Amer. Math. Soc. 269 (1982), 677-683.
- [3] W. O. Bray and Č. Stanojević, Tauberian ${L}_{1}$-convergence classes of Fourier series II, Math. Ann. 269 (1984), 469-486. Zbl0535.42007
- [4] C. P. Chen, ${L}^{1}$-convergence of Fourier series, J. Austral. Math. Soc. Ser. A 41 (1986), 376-390. Zbl0642.42005
- [5] G. A. Fomin, A class of trigonometric series, Mat. Zametki 23 (1978), 213-222 (in Russian).
- [6] S. Fridli, An inverse Sidon type inequality, Studia Math. 105 (1993), 283-308. Zbl0811.42001
- [7] D. E. Grow and Č. V. Stanojević, Convergence and the Fourier character of trigonometric transforms with slowly varying convergence moduli, Math. Ann. 302 (1995), 433-472. Zbl0827.42003
- [8] B. S. Kashin and A. A. Saakyan, Orthogonal Series, Nauka, Moscow, 1984 (in Russian). Zbl0632.42017
- [9] A. N. Kolmogorov, Sur l'ordre de grandeur des coefficients de la série de Fourier-Lebesgue, Bull. Internat. Acad. Polon. Sci. Lettres Sér. (A) Sci. Math. 1923, 83-86.
- [10] M. A. Krasnosel'skiǐ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
- [11] F. Schipp, Sidon-type inequalities, in: Approximation Theory, Lecture Notes in Pure and Appl. Math. 138, Marcel Dekker, New York, 1992, 421-436 . Zbl0801.42024
- [12] F. Schipp, W. R. Wade and P. Simon (with assistance from J. Pál), Walsh Series, Adam Hilger, Bristol, 1990. Zbl0727.42017
- [13] S. Sidon, Hinreichende Bedingungen für den Fourier-Charakter einer trigonometrischen Reihe, J. London Math. Soc. 14 (1939), 158-160. Zbl65.0255.02
- [14] Č. V. Stanojević, Tauberian conditions for the ${L}_{1}$-convergence of Fourier series, Trans. Amer. Math. Soc. 271 (1982), 234-244.
- [15] Č. V. Stanojević, Structure of Fourier and Fourier-Stieltjes coefficients of series with slowly varying convergence moduli, Bull. Amer. Math. Soc. 19 (1988), 283-286. Zbl0663.42008
- [16] Č. V. Stanojević and V. B. Stanojević, Generalizations of the Sidon-Telyakovskiĭ theorem, Proc. Amer. Math. Soc. 101 (1987), 679-684. Zbl0647.42007
- [17] N. Tanović-Miller, On integrability and ${L}^{1}$ convergence of cosine series, Boll. Un. Mat. Ital. B (7) 4 (1990), 499-516. Zbl0725.42007
- [18] S. A. Telyakovskiǐ, On a sufficient condition of Sidon for the integrability of trigonometric series, Mat. Zametki 14 (1973), 317-328 (in Russian).
- [19] W. H. Young, On the Fourier series of bounded functions, Proc. London Math. Soc. (2) 12 (1913), 41-70. Zbl44.0300.03
- [20] A. Zygmund, Trigonometric Series, University Press, Cambridge, 1959. Zbl0085.05601

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.