On certain linear combinations of partial sums of Fourier series
C. Neugebauer (1972)
Studia Mathematica
Similarity:
C. Neugebauer (1972)
Studia Mathematica
Similarity:
P. Ney, S. Wainger (1972)
Studia Mathematica
Similarity:
Nobushige Kurokawa, Masato Wakayama (2005)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Chang-Pao Chen (1994)
Studia Mathematica
Similarity:
We prove that if as max(|j|,|k|) → ∞, and , then f(x,y)ϕ(x)ψ(y) ∈ L¹(T²) and as min(m,n) → ∞, where f(x,y) is the limiting function of the rectangular partial sums , (ϕ,θ) and (ψ,ϑ) are pairs of type I. A generalization of this result concerning L¹-convergence is also established. Extensions of these results to double series of orthogonal functions are also considered. These results can be extended to n-dimensional case. The aforementioned results generalize work of Balashov [1],...
W. K. A. Loh (1996)
Acta Arithmetica
Similarity:
Z. Ciesielski (1968)
Studia Mathematica
Similarity:
Charles Fefferman (1972)
Studia Mathematica
Similarity:
J. Mikusiński (1953)
Studia Mathematica
Similarity:
D. Burgess (1971)
Acta Arithmetica
Similarity:
Siddiqi, Rafat N. (1979)
Portugaliae mathematica
Similarity: