Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces

Daniel Azagra

Studia Mathematica (1997)

  • Volume: 125, Issue: 2, page 179-186
  • ISSN: 0039-3223

How to cite

top

Azagra, Daniel. "Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces." Studia Mathematica 125.2 (1997): 179-186. <http://eudml.org/doc/216431>.

@article{Azagra1997,
abstract = {},
author = {Azagra, Daniel},
journal = {Studia Mathematica},
keywords = {$C^p$ smooth norm; spheres and hyperplanes in Banach spaces; infinite-dimensional Banach space; unit sphere; hyperplane; diffeomorphism},
language = {eng},
number = {2},
pages = {179-186},
title = {Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces},
url = {http://eudml.org/doc/216431},
volume = {125},
year = {1997},
}

TY - JOUR
AU - Azagra, Daniel
TI - Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces
JO - Studia Mathematica
PY - 1997
VL - 125
IS - 2
SP - 179
EP - 186
AB -
LA - eng
KW - $C^p$ smooth norm; spheres and hyperplanes in Banach spaces; infinite-dimensional Banach space; unit sphere; hyperplane; diffeomorphism
UR - http://eudml.org/doc/216431
ER -

References

top
  1. [1] C. Bessaga, Every infinite-dimensional Hilbert space is diffeomorphic with its unit sphere, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 27-31. Zbl0151.17703
  2. [2] C. Bessaga, Interplay between infinite-dimensional topology and functional analysis. Mappings defined by explicit formulas and their applications, Topology Proc. 19 (1994), 15-35. Zbl0840.46008
  3. [3] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, Monograf. Mat. 58, PWN, Warszawa, 1975. 
  4. [4] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs Surveys Pure and Appl. Math. 64, Longman, 1993. Zbl0782.46019
  5. [5] T. Dobrowolski, Smooth and R-analytic negligibility of subsets and extension of homeomorphisms in Banach spaces, Studia Math. 65 (1979), 115-139. Zbl0421.46012
  6. [6] T. Dobrowolski, Every infinite-dimensional Hilbert space is real-analytically isomorphic with its unit sphere, J. Funct. Anal. 134 (1995), 350-362. Zbl0869.46013
  7. [7] T. Dobrowolski, Relative classification of smooth convex bodies, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 309-312. Zbl0354.58005
  8. [8] B. M. Garay, Cross-sections of solution funnels in Banach spaces, Studia Math. 97 (1990), 13-26. Zbl0714.34099
  9. [9] B. M. Garay, Deleting homeomorphisms and the failure of Peano's existence theorem in infinite-dimensional Banach spaces, Funkcial. Ekvac. 34 (1991), 85-93. Zbl0734.34055
  10. [10] K. Goebel and J. Wośko, Making a hole in the space, Proc. Amer. Math. Soc. 114 (1992), 475-476. Zbl0747.46011
  11. [11] W. T. Gowers, A solution to Banach's hyperplane problem, Bull. London Math. Soc. 26 (1994), 523-530. Zbl0838.46011
  12. [12] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874. Zbl0827.46008
  13. [13] R. C. James, Weakly compact sets, Trans. Amer. Math. Soc. 113 (1964), 129-140. Zbl0129.07901
  14. [14] K V. L. Klee, Convex bodies and periodic homeomorphisms in Hilbert space, ibid. 74 (1953), 10-43. Zbl0050.33202
  15. [15] S. Troyanski, On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math. 37 (1971), 173-180. Zbl0214.12701

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.