On the relation between complex and real methods of interpolation

Mieczysław Mastyło; Vladimir Ovchinnikov

Studia Mathematica (1997)

  • Volume: 125, Issue: 3, page 201-218
  • ISSN: 0039-3223

Abstract

top
We study those compatible couples of Banach spaces for which the complex method interpolation spaces are also described by the K-method of interpolation. As an application we present counter-examples to Cwikel's conjecture that all interpolation spaces of a Banach couple are described by the K-method whenever all complex interpolation spaces have this property.

How to cite

top

Mastyło, Mieczysław, and Ovchinnikov, Vladimir. "On the relation between complex and real methods of interpolation." Studia Mathematica 125.3 (1997): 201-218. <http://eudml.org/doc/216433>.

@article{Mastyło1997,
abstract = {We study those compatible couples of Banach spaces for which the complex method interpolation spaces are also described by the K-method of interpolation. As an application we present counter-examples to Cwikel's conjecture that all interpolation spaces of a Banach couple are described by the K-method whenever all complex interpolation spaces have this property.},
author = {Mastyło, Mieczysław, Ovchinnikov, Vladimir},
journal = {Studia Mathematica},
keywords = {compatible couples of Banach spaces; complex method interpolation spaces; -method of interpolation; counterexamples to Cwikel's conjecture},
language = {eng},
number = {3},
pages = {201-218},
title = {On the relation between complex and real methods of interpolation},
url = {http://eudml.org/doc/216433},
volume = {125},
year = {1997},
}

TY - JOUR
AU - Mastyło, Mieczysław
AU - Ovchinnikov, Vladimir
TI - On the relation between complex and real methods of interpolation
JO - Studia Mathematica
PY - 1997
VL - 125
IS - 3
SP - 201
EP - 218
AB - We study those compatible couples of Banach spaces for which the complex method interpolation spaces are also described by the K-method of interpolation. As an application we present counter-examples to Cwikel's conjecture that all interpolation spaces of a Banach couple are described by the K-method whenever all complex interpolation spaces have this property.
LA - eng
KW - compatible couples of Banach spaces; complex method interpolation spaces; -method of interpolation; counterexamples to Cwikel's conjecture
UR - http://eudml.org/doc/216433
ER -

References

top
  1. [A] S. V. Astashkin, Description of interpolation orbits between ( l 1 ( w 0 ) , l 1 ( w 1 ) ) and ( l ( w 0 ) , l ( w 1 ) ) , Mat. Zametki 35 (1984), 497-503 (in Russian); English transl.: Math. Notes 35 (1984), 261-265. 
  2. [B] J. Bergh, On the relation between the two complex methods of interpolation, Indiana Univ. Math. J. 28 (1979), 775-778. Zbl0394.41004
  3. [BL] J. Bergh and J. Löfström, Interpolation spaces. An Introduction, Springer, Berlin 1976. Zbl0344.46071
  4. [BK] Yu. A. Brudnyĭ and N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces. I, North-Holland, Amsterdam, 1991. 
  5. [Ca] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. Zbl0204.13703
  6. [Cw1] M. Cwikel, On ( L p 0 ( A 0 ) , L p 1 ( A 1 ) ) θ , q , Proc. Amer. Math. Soc. 44 (1974), 286-292. 
  7. [Cw2] M. Cwikel, Monotonicity properties of interpolation spaces II, Ark. Mat. 19 (1981), 123-136. Zbl0467.46061
  8. [Cw3] M. Cwikel, Real and complex interpolation and extrapolation of compact operators, Duke Math. J. 65 (1992), 333-343. Zbl0787.46062
  9. [CM1] M. Cwikel and M. Mastyło, The universal right K-property for Banach lattices, preprint. 
  10. [CM2] M. Cwikel and M. Mastyło, On Banach couples which satisfy the condition ( A 0 , A 1 ) θ , 0 = ( A 0 , A 1 ) θ , , preprint. 
  11. [CM3] M. Cwikel and M. Mastyło, On interpolation spaces containing copies of c 0 and l , preprint. 
  12. [CN] M. Cwikel and P. Nilsson, On Calderón-Mityagin couples of Banach lattices, in: Proc. Conf. Constructive Theory of Functions, Varna, 1984, Bulgar. Acad. Sci., 1984, 232-236. 
  13. [CP] M. Cwikel and J. Peetre, Abstract K and J spaces, J. Math. Pures Appl. 60 (1981), 1-50. 
  14. [DKO] V. I. Dmitriev, S. G. Kreĭn and V. I. Ovchinnikov, Fundamentals of the theory of interpolation of linear operators, in: Geometry of Linear Spaces and Operator Theory, Yaroslavl', 1977, 31-74 (in Russian). 
  15. [DO] V. I. Dmitriev and V. I. Ovchinnikov, On the real method spaces, Dokl. Akad. Nauk SSSR 246 (1979), 794-799 (in Russian); English transl.: Soviet Math. Dokl. 20 (1979), 538-542. 
  16. [H] T. Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177-199. Zbl0193.08801
  17. [J] S. Janson, Minimal and maximal methods of interpolation, J. Funct. Anal. 44 (1981), 50-73. Zbl0492.46059
  18. [K] N. J. Kalton, Calderón couples of rearrangement invariant spaces, Studia Math. 106 (1993), 233-277. Zbl0810.46020
  19. [KPS] S. G. Kreĭn, Yu. I. Petunin and E. M. Semenov, Interpolation of Linear Operators, Nauka, Moscow, 1978 (in Russian); English transl.: Amer. Math. Soc., Providence, 1982. 
  20. [M1] M. Mastyło, Interpolation between some symmetric spaces, Arch. Math. (Basel) 52 (1989), 571-579. Zbl0691.46050
  21. [M2] M. Mastyło, K-monotone spaces between spaces of absolutely summable series, Forum Math. 2 (1990), 73-87. Zbl0724.46054
  22. [MX] M. Mastyło and Q. Xu, Monotonicity between vector-valued bounded sequence spaces, Bull. Polish Acad. Sci. Math. 41 (1993), 177-187. Zbl0805.46076
  23. [O1] V. I. Ovchinnikov, Interpolation theorems resulting from Grothendieck's inequality, Funktsional. Anal. i Prilozhen. 10 (4) (1976), 45-54 (in Russian); English transl.: Functional Anal. Appl. 10 (1977), 287-294. 
  24. [O2] V. I. Ovchinnikov, The method of orbits in interpolation theory, Math. Rep. 1 (1984), 349-516. 
  25. [OD] V. I. Ovchinnikov and V. I. Dmitriev, The limits of the applicability of the K-method of interpolation, in: Collection of Articles on Applications of Functional Analysis, Voronezh 1975, 102-108 (in Russian). 
  26. [Pe] J. Peetre, Banach couples, I: Elementary theory, Technical Report, Lund, 1971. 
  27. [Pi] G. Pisier, Interpolation between H p spaces and non-commutative generalizations. I, Pacific J. Math. 155 (1992), 341-368. Zbl0747.46050
  28. [R] H. P. Rosenthal, On relatively disjoint families of measures with some applications to Banach space theory, Studia Math. 37 (1970), 13-36. Zbl0227.46027
  29. [S] V. A. Shestakov, Complex interpolation in Banach spaces of measurable functions, Vestnik Leningrad. Univ. 19 (1974), 64-68 (in Russian); English transl.: Vestnik Leningrad Univ. Math. 7 (1979). Zbl0297.46028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.