# On the relation between complex and real methods of interpolation

Mieczysław Mastyło; Vladimir Ovchinnikov

Studia Mathematica (1997)

- Volume: 125, Issue: 3, page 201-218
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topMastyło, Mieczysław, and Ovchinnikov, Vladimir. "On the relation between complex and real methods of interpolation." Studia Mathematica 125.3 (1997): 201-218. <http://eudml.org/doc/216433>.

@article{Mastyło1997,

abstract = {We study those compatible couples of Banach spaces for which the complex method interpolation spaces are also described by the K-method of interpolation. As an application we present counter-examples to Cwikel's conjecture that all interpolation spaces of a Banach couple are described by the K-method whenever all complex interpolation spaces have this property.},

author = {Mastyło, Mieczysław, Ovchinnikov, Vladimir},

journal = {Studia Mathematica},

keywords = {compatible couples of Banach spaces; complex method interpolation spaces; -method of interpolation; counterexamples to Cwikel's conjecture},

language = {eng},

number = {3},

pages = {201-218},

title = {On the relation between complex and real methods of interpolation},

url = {http://eudml.org/doc/216433},

volume = {125},

year = {1997},

}

TY - JOUR

AU - Mastyło, Mieczysław

AU - Ovchinnikov, Vladimir

TI - On the relation between complex and real methods of interpolation

JO - Studia Mathematica

PY - 1997

VL - 125

IS - 3

SP - 201

EP - 218

AB - We study those compatible couples of Banach spaces for which the complex method interpolation spaces are also described by the K-method of interpolation. As an application we present counter-examples to Cwikel's conjecture that all interpolation spaces of a Banach couple are described by the K-method whenever all complex interpolation spaces have this property.

LA - eng

KW - compatible couples of Banach spaces; complex method interpolation spaces; -method of interpolation; counterexamples to Cwikel's conjecture

UR - http://eudml.org/doc/216433

ER -

## References

top- [A] S. V. Astashkin, Description of interpolation orbits between $({l}_{1}\left({w}_{0}\right),{l}_{1}\left({w}_{1}\right))$ and $({l}_{\infty}\left({w}_{0}\right),{l}_{\infty}\left({w}_{1}\right))$, Mat. Zametki 35 (1984), 497-503 (in Russian); English transl.: Math. Notes 35 (1984), 261-265.
- [B] J. Bergh, On the relation between the two complex methods of interpolation, Indiana Univ. Math. J. 28 (1979), 775-778. Zbl0394.41004
- [BL] J. Bergh and J. Löfström, Interpolation spaces. An Introduction, Springer, Berlin 1976. Zbl0344.46071
- [BK] Yu. A. Brudnyĭ and N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces. I, North-Holland, Amsterdam, 1991.
- [Ca] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. Zbl0204.13703
- [Cw1] M. Cwikel, On ${({L}_{p}0\left({A}_{0}\right),{L}_{p}1\left({A}_{1}\right))}_{\theta},q$, Proc. Amer. Math. Soc. 44 (1974), 286-292.
- [Cw2] M. Cwikel, Monotonicity properties of interpolation spaces II, Ark. Mat. 19 (1981), 123-136. Zbl0467.46061
- [Cw3] M. Cwikel, Real and complex interpolation and extrapolation of compact operators, Duke Math. J. 65 (1992), 333-343. Zbl0787.46062
- [CM1] M. Cwikel and M. Mastyło, The universal right K-property for Banach lattices, preprint.
- [CM2] M. Cwikel and M. Mastyło, On Banach couples which satisfy the condition ${({A}_{0},{A}_{1})}_{\theta},{\infty}^{0}={({A}_{0},{A}_{1})}_{\theta},\infty $, preprint.
- [CM3] M. Cwikel and M. Mastyło, On interpolation spaces containing copies of ${c}_{0}$ and ${l}_{\infty}$, preprint.
- [CN] M. Cwikel and P. Nilsson, On Calderón-Mityagin couples of Banach lattices, in: Proc. Conf. Constructive Theory of Functions, Varna, 1984, Bulgar. Acad. Sci., 1984, 232-236.
- [CP] M. Cwikel and J. Peetre, Abstract K and J spaces, J. Math. Pures Appl. 60 (1981), 1-50.
- [DKO] V. I. Dmitriev, S. G. Kreĭn and V. I. Ovchinnikov, Fundamentals of the theory of interpolation of linear operators, in: Geometry of Linear Spaces and Operator Theory, Yaroslavl', 1977, 31-74 (in Russian).
- [DO] V. I. Dmitriev and V. I. Ovchinnikov, On the real method spaces, Dokl. Akad. Nauk SSSR 246 (1979), 794-799 (in Russian); English transl.: Soviet Math. Dokl. 20 (1979), 538-542.
- [H] T. Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177-199. Zbl0193.08801
- [J] S. Janson, Minimal and maximal methods of interpolation, J. Funct. Anal. 44 (1981), 50-73. Zbl0492.46059
- [K] N. J. Kalton, Calderón couples of rearrangement invariant spaces, Studia Math. 106 (1993), 233-277. Zbl0810.46020
- [KPS] S. G. Kreĭn, Yu. I. Petunin and E. M. Semenov, Interpolation of Linear Operators, Nauka, Moscow, 1978 (in Russian); English transl.: Amer. Math. Soc., Providence, 1982.
- [M1] M. Mastyło, Interpolation between some symmetric spaces, Arch. Math. (Basel) 52 (1989), 571-579. Zbl0691.46050
- [M2] M. Mastyło, K-monotone spaces between spaces of absolutely summable series, Forum Math. 2 (1990), 73-87. Zbl0724.46054
- [MX] M. Mastyło and Q. Xu, Monotonicity between vector-valued bounded sequence spaces, Bull. Polish Acad. Sci. Math. 41 (1993), 177-187. Zbl0805.46076
- [O1] V. I. Ovchinnikov, Interpolation theorems resulting from Grothendieck's inequality, Funktsional. Anal. i Prilozhen. 10 (4) (1976), 45-54 (in Russian); English transl.: Functional Anal. Appl. 10 (1977), 287-294.
- [O2] V. I. Ovchinnikov, The method of orbits in interpolation theory, Math. Rep. 1 (1984), 349-516.
- [OD] V. I. Ovchinnikov and V. I. Dmitriev, The limits of the applicability of the K-method of interpolation, in: Collection of Articles on Applications of Functional Analysis, Voronezh 1975, 102-108 (in Russian).
- [Pe] J. Peetre, Banach couples, I: Elementary theory, Technical Report, Lund, 1971.
- [Pi] G. Pisier, Interpolation between ${H}^{p}$ spaces and non-commutative generalizations. I, Pacific J. Math. 155 (1992), 341-368. Zbl0747.46050
- [R] H. P. Rosenthal, On relatively disjoint families of measures with some applications to Banach space theory, Studia Math. 37 (1970), 13-36. Zbl0227.46027
- [S] V. A. Shestakov, Complex interpolation in Banach spaces of measurable functions, Vestnik Leningrad. Univ. 19 (1974), 64-68 (in Russian); English transl.: Vestnik Leningrad Univ. Math. 7 (1979). Zbl0297.46028

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.