On sharp reiteration theorems and weighted norm inequalities

Jesús Bastero; Mario Milman; Francisco Ruiz

Studia Mathematica (2000)

  • Volume: 142, Issue: 1, page 7-24
  • ISSN: 0039-3223

Abstract

top
We prove sharp end forms of Holmstedt's reiteration theorem which are closely connected with a general form of Gehring's Lemma. Reverse type conditions for the Hardy-Littlewood-Pólya order are considered and the maximal elements are shown to satisfy generalized Gehring conditions. The methods we use are elementary and based on variants of reverse Hardy inequalities for monotone functions.

How to cite

top

Bastero, Jesús, Milman, Mario, and Ruiz, Francisco. "On sharp reiteration theorems and weighted norm inequalities." Studia Mathematica 142.1 (2000): 7-24. <http://eudml.org/doc/216791>.

@article{Bastero2000,
abstract = {We prove sharp end forms of Holmstedt's reiteration theorem which are closely connected with a general form of Gehring's Lemma. Reverse type conditions for the Hardy-Littlewood-Pólya order are considered and the maximal elements are shown to satisfy generalized Gehring conditions. The methods we use are elementary and based on variants of reverse Hardy inequalities for monotone functions.},
author = {Bastero, Jesús, Milman, Mario, Ruiz, Francisco},
journal = {Studia Mathematica},
keywords = {reiteration; weights; Hardy inequality; Holmsted's reiteration formula; reverse Hölder inequalities; weighted norm inequalities},
language = {eng},
number = {1},
pages = {7-24},
title = {On sharp reiteration theorems and weighted norm inequalities},
url = {http://eudml.org/doc/216791},
volume = {142},
year = {2000},
}

TY - JOUR
AU - Bastero, Jesús
AU - Milman, Mario
AU - Ruiz, Francisco
TI - On sharp reiteration theorems and weighted norm inequalities
JO - Studia Mathematica
PY - 2000
VL - 142
IS - 1
SP - 7
EP - 24
AB - We prove sharp end forms of Holmstedt's reiteration theorem which are closely connected with a general form of Gehring's Lemma. Reverse type conditions for the Hardy-Littlewood-Pólya order are considered and the maximal elements are shown to satisfy generalized Gehring conditions. The methods we use are elementary and based on variants of reverse Hardy inequalities for monotone functions.
LA - eng
KW - reiteration; weights; Hardy inequality; Holmsted's reiteration formula; reverse Hölder inequalities; weighted norm inequalities
UR - http://eudml.org/doc/216791
ER -

References

top
  1. [AM] M. A. Ari no and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (1990), 727-735. Zbl0716.42016
  2. [AKMP] I. U. Asekritova, N. Ya. Krugljak, L. Maligranda and L. E. Persson, Distribution and rearrangement estimates of the maximal function and interpolation, Studia Math. 124 (1997), 107-132. Zbl0888.42011
  3. [BMR] J. Bastero, M. Milman and F. Ruiz, On the connection between weighted norm inequalities, commutators and real interpolation, preprint. Zbl0992.46021
  4. [BMR1] J. Bastero, M. Milman and F. Ruiz, Reverse Hölder inequalites and interpolation, in: Proc. Haifa Conf. on Interpolation Theory and Related Topics, to appear. Zbl0981.46027
  5. [BR] J. Bastero and F. Ruiz, Elementary reverse Hölder type inequalities with application to operator interpolation theory, Proc. Amer. Math. Soc. 124 (1996), 3183-3192. Zbl0865.46015
  6. [Be] G. Bennett, Lower bounds for matrices, Linear Algebra Appl. 82 (1986), 81-98. Zbl0601.15014
  7. [BS] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988. Zbl0647.46057
  8. [BL] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, New York, 1976. Zbl0344.46071
  9. [BK] Y. Brudnyĭ and N. Krugljak, Interpolation Functors and Interpolation Spaces, North-Holland, 1991. Zbl0743.46082
  10. [Ca] A. P. Calderón, Spaces between L 1 and L and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299. 
  11. [Cw] M. Cwikel, Monotonicity properties of interpolation spaces II, Ark. Mat. 19 (1981), 123-136. Zbl0467.46061
  12. [FM] M. Franciosi and G. Moscariello, Higher integrability results, Manuscripta Math. 52 (1985), 151-170. Zbl0576.42022
  13. [Ge] F. W. Gehring, The L p integrability of partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 123-136. 
  14. [HLP] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, 1952. 
  15. [Ho] T. Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177-199. Zbl0193.08801
  16. [Iw] T. Iwaniec, The Gehring lemma, in: Quasiconformal Mappings and Analysis (Ann Arbor, MI, 1995), Springer, New York, 1998, 181-204. 
  17. [JM] B. Jawerth and M. Milman, Extrapolation theory with applications, Mem. Amer. Math. Soc. 440 (1991). Zbl0733.46040
  18. [MM] M. Mastyło and M. Milman, A new approach to Gehring's Lemma, preprint. Zbl0978.42011
  19. [MO] M. Mastyło and V. Ovchinnikov, On the relation between complex and real methods of interpolation, Studia Math. 125 (1997), 201-218. Zbl0910.46058
  20. [Mi] M. Milman, A note on Gehring's Lemma, Ann. Acad. Sci. Fenn. Math. 21 (1996), 389-398. Zbl0903.42008
  21. [Mi1] M. Milman, A note on reversed Hardy inequalities and Gehring's lemma, Comm. Pure Appl. Math. 50 (1997), 311-315. Zbl0901.42014
  22. [Mu1] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. Zbl0236.26016
  23. [Mu2] B. Muckenhoupt, Hardy's inequalities with weights, Studia Math. 44 (1972), 31-38. Zbl0236.26015
  24. [Ni] P. Nilsson, Reiteration theorems for real interpolation and approximation spaces, Ann. Mat. Pura Appl. 132 (1982), 291-330. Zbl0514.46049
  25. [Ov] V. I. Ovchinnikov, The method of orbits in interpolation theory, Math. Rep. 1 (1984), 349-515. 
  26. [Re] P. F. Renaud, A reversed Hardy inequality, Bull. Austral. Math. Soc. 34 (1986), 225-232. Zbl0589.47008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.