Fixed points of Lipschitzian semigroups in Banach spaces
Studia Mathematica (1997)
- Volume: 126, Issue: 2, page 101-113
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topGórnicki, Jarosław. "Fixed points of Lipschitzian semigroups in Banach spaces." Studia Mathematica 126.2 (1997): 101-113. <http://eudml.org/doc/216446>.
@article{Górnicki1997,
abstract = {We prove the following theorem: Let p > 1 and let E be a real p-uniformly convex Banach space, and C a nonempty bounded closed convex subset of E. If $T = \{T_s: C → C: s ∈ G = [0,∞)\}$ is a Lipschitzian semigroup such that $g = lim inf_\{G ∋ α → ∞\} inf_\{G ∋ δ ≥ 0\} 1/α ʃ^α_0 ∥T_\{β+δ\}∥^p dβ < 1 + c$, where c > 0 is some constant, then there exists x ∈ C such that $T_sx = x$ for all s ∈ G.},
author = {Górnicki, Jarosław},
journal = {Studia Mathematica},
keywords = {Lipschitzian semigroup; fixed point; p-uniformly convex Banach space},
language = {eng},
number = {2},
pages = {101-113},
title = {Fixed points of Lipschitzian semigroups in Banach spaces},
url = {http://eudml.org/doc/216446},
volume = {126},
year = {1997},
}
TY - JOUR
AU - Górnicki, Jarosław
TI - Fixed points of Lipschitzian semigroups in Banach spaces
JO - Studia Mathematica
PY - 1997
VL - 126
IS - 2
SP - 101
EP - 113
AB - We prove the following theorem: Let p > 1 and let E be a real p-uniformly convex Banach space, and C a nonempty bounded closed convex subset of E. If $T = {T_s: C → C: s ∈ G = [0,∞)}$ is a Lipschitzian semigroup such that $g = lim inf_{G ∋ α → ∞} inf_{G ∋ δ ≥ 0} 1/α ʃ^α_0 ∥T_{β+δ}∥^p dβ < 1 + c$, where c > 0 is some constant, then there exists x ∈ C such that $T_sx = x$ for all s ∈ G.
LA - eng
KW - Lipschitzian semigroup; fixed point; p-uniformly convex Banach space
UR - http://eudml.org/doc/216446
ER -
References
top- [1] J.-B. Baillon, Quelques aspects de la théorie des points fixes dans les espaces de Banach I, Séminaire d'Analyse Fonctionnelle 1978-1979, École Polytechnique, Centre de Mathématiques, Exposé 7, Nov. 1978.
- [2] J. Barros-Neto, An Introduction to the Theory of Distributions, Dekker, New York, 1973.
- [3] E. Casini and E. Maluta, Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure, Nonlinear Anal. 9 (1985), 103-108. Zbl0526.47034
- [4] T. Domínguez Benavides, Fixed point theorems for uniformly Lipschitzian mappings and asymptotically regular mappings, Nonlinear Anal., to appear.
- [5] T. Domínguez Benavides, Geometric constants concerning metric fixed point theory: finite or infinite dimensional character, in: Proc. World Congress of Nonlinear Analysts, Athens, 1996, to appear.
- [6] T. Domínguez Benavides and H. K. Xu, A new geometrical coefficient for Banach spaces and its applications in fixed point theory, Nonlinear Anal. 25 (1995), 311-325. Zbl0830.47041
- [7] D. J. Downing and W. O. Ray, Uniformly Lipschitzian semigroups in Hilbert space, Canad. Math. Bull. 25 (1982), 210-214. Zbl0438.47059
- [8] N. Dunford and J. Schwartz, Linear Operators, Vol. I, Interscience, New York, 1958. Zbl0084.10402
- [9] P. L. Duren, Theory of Spaces, Academic Press, New York, 1970. Zbl0215.20203
- [10] K. Goebel and W. A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math. 47 (1973), 135-140. Zbl0265.47044
- [11] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. 28, Cambridge Univ. Press, London, 1990. Zbl0708.47031
- [12] K. Goebel, W. A. Kirk and R. L. Thele, Uniformly Lipschitzian families of transformations in Banach spaces, Canad. J. Math. 26 (1974), 1245-1256. Zbl0285.47039
- [13] J. Górnicki, A remark on fixed point theorems for Lipschitzian mappings, J. Math. Anal. Appl. 183 (1994), 495-508. Zbl0806.47050
- [14] J. Górnicki, The review of [6], Math. Rev. MR96e:47062. Zbl1193.47055
- [15] J. Górnicki, Lipschitzian semigroups in Hilbert space, in: Proc. World Congress of Nonlinear Analysts, Athens, 1996, to appear. Zbl0894.47043
- [16] J. Górnicki and M. Krüppel, Fixed points of uniformly Lipschitzian mappings, Bull. Polish Acad. Sci. Math. 36 (1988), 57-63. Zbl0676.47039
- [17] J. Górnicki and M. Krüppel, Fixed point theorems for mappings with Lipschitzian iterates, Nonlinear Anal. 19 (1992), 353-363. Zbl0780.47040
- [18] T. J. Huang and Y. Y. Huang, Fixed point theorems for uniformly Lipschitzian semigroups in metric spaces, Indian J. Pure Appl. Math. 26 (1995), 233-239. Zbl0873.54047
- [19] H. Ishihara, Fixed point theorems for Lipschitzian semigroups, Canad. Math. Bull. 32 (1989), 90-97. Zbl0638.47061
- [20] H. Ishihara and W. Takahashi, Fixed point theorems for uniformly Lipschitzian semigroups in Hilbert spaces, J. Math. Anal. Appl. 127 (1978), 206-210. Zbl0637.47028
- [21] M. Krüppel, Ungleichungen für den asymptotischen Radius in uniform konvexen Banach-Räumen mit Anwendungen in der Fixpunkttheorie, Rostock. Math. Kolloq. 48 (1995), 59-74.
- [22] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, PWN and UŚ, Warszawa-Kraków-Katowice, 1985.
- [23] E. A. Lifshitz, Fixed point theorems for operators in strongly convex spaces, Voronezh. Gos. Univ. Trudy Mat. Fak. 16 (1975), 23-28 (in Russian).
- [24] T. C. Lim, On some inequalities in best approximation theory, J. Math. Anal. Appl. 154 (1991), 523-528. Zbl0744.41015
- [25] T. C. Lim, H. K. Xu and Z. B. Xu, An inequality and its applications to fixed point theory and approximation theory, in: Progress in Approximation Theory, P. Nevai and A. Pinkus (eds.), Academic Press, New York, 1991, 609-624.
- [26] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, II. Function Spaces, Springer, Berlin, 1979. Zbl0403.46022
- [27] N. Mizoguchi and W. Takahashi, On the existence of fixed points and ergodic retractions for Lipschitzian semigroups in Hilbert space, Nonlinear Anal. 14 (1990), 69-80. Zbl0695.47063
- [28] B. Prus and R. Smarzewski, Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10-21. Zbl0617.41046
- [29] R. Smarzewski, Strongly unique minimization of functionals in Banach spaces with applications to theory of approximation and fixed points, ibid. 115 (1986), 155-172. Zbl0593.49004
- [30] R. Smarzewski, Strongly unique best approximation in Banach spaces, II, J. Approx. Theory 51 (1987), 202-217. Zbl0657.41022
- [31] R. Smarzewski, On the inequality of Bynum and Drew, J. Math. Anal. Appl. 150 (1990), 146-150. Zbl0716.46023
- [32] K. K. Tan and H. K. Xu, Fixed point theorems for Lipschitzian semigropus in Banach spaces, Nonlinear Anal. 20 (1993), 395-404. Zbl0781.47044
- [33] H. K. Xu, Fixed point theorems for uniformly Lipschitzian semigroups in uniformly convex Banach spaces, J. Math. Anal. Appl. 152 (1990), 391-398. Zbl0722.47050
- [34] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127-1138. Zbl0757.46033
- [35] C. Zălinescu, On uniformly convex functions, J. Math. Anal. Appl. 95 (1983), 344-374. Zbl0519.49010
- [36] L.-C. Zeng, On the existence of fixed points and nonlinear ergodic retractions for Lipschitzian semigroups without convexity, Nonlinear Anal. 24 (1995), 1347-1359. Zbl0858.47035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.