A fixed point theorem for transformations whose iterates have uniform Lipschitz constant

K. Goebel; W. Kirk

Studia Mathematica (1973)

  • Volume: 47, Issue: 2, page 134-140
  • ISSN: 0039-3223

How to cite

top

Goebel, K., and Kirk, W.. "A fixed point theorem for transformations whose iterates have uniform Lipschitz constant." Studia Mathematica 47.2 (1973): 134-140. <http://eudml.org/doc/217785>.

@article{Goebel1973,
author = {Goebel, K., Kirk, W.},
journal = {Studia Mathematica},
language = {eng},
number = {2},
pages = {134-140},
title = {A fixed point theorem for transformations whose iterates have uniform Lipschitz constant},
url = {http://eudml.org/doc/217785},
volume = {47},
year = {1973},
}

TY - JOUR
AU - Goebel, K.
AU - Kirk, W.
TI - A fixed point theorem for transformations whose iterates have uniform Lipschitz constant
JO - Studia Mathematica
PY - 1973
VL - 47
IS - 2
SP - 134
EP - 140
LA - eng
UR - http://eudml.org/doc/217785
ER -

Citations in EuDML Documents

top
  1. J. B. Baillon, Quelques aspects de la théorie des points fixes dans les espaces de Banach - I
  2. Jarosław Górnicki, Fixed points of Lipschitzian semigroups in Banach spaces
  3. Jarosław Górnicki, Uniformly normal structure and fixed points of uniformly Lipschitzian mappings
  4. Jong Soo Jung, Yeol Je Cho, Shin Min Kang, Byung-Soo Lee, Balwant Singh Thakur, Random fixed point theorems for a certain class of mappings in Banach spaces
  5. Jarosław Górnicki, Krzysztof Pupka, Fixed point theorems for n -periodic mappings in Banach spaces
  6. Krzysztof Pupka, Fixed points of periodic and firmly lipschitzian mappings in Banach spaces
  7. Simeon Reich, Some fixed point problems

NotesEmbed ?

top

You must be logged in to post comments.