# Packing in Orlicz sequence spaces

Studia Mathematica (1997)

- Volume: 126, Issue: 3, page 235-251
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topRao, M., and Ren, Z.. "Packing in Orlicz sequence spaces." Studia Mathematica 126.3 (1997): 235-251. <http://eudml.org/doc/216453>.

@article{Rao1997,

abstract = {We show how one can, in a unified way, calculate the Kottman and the packing constants of the Orlicz sequence space defined by an N-function, equipped with either the gauge or Orlicz norms. The values of these constants for a class of reflexive Orlicz sequence spaces are found, using a quantitative index of N-functions and some interpolation theorems. The exposition is essentially selfcontained.},

author = {Rao, M., Ren, Z.},

journal = {Studia Mathematica},

keywords = {packing constant; quantitative index; interpolation; Kottman constant; Orlicz sequence spaces; gauge norm; Orlicz norm},

language = {eng},

number = {3},

pages = {235-251},

title = {Packing in Orlicz sequence spaces},

url = {http://eudml.org/doc/216453},

volume = {126},

year = {1997},

}

TY - JOUR

AU - Rao, M.

AU - Ren, Z.

TI - Packing in Orlicz sequence spaces

JO - Studia Mathematica

PY - 1997

VL - 126

IS - 3

SP - 235

EP - 251

AB - We show how one can, in a unified way, calculate the Kottman and the packing constants of the Orlicz sequence space defined by an N-function, equipped with either the gauge or Orlicz norms. The values of these constants for a class of reflexive Orlicz sequence spaces are found, using a quantitative index of N-functions and some interpolation theorems. The exposition is essentially selfcontained.

LA - eng

KW - packing constant; quantitative index; interpolation; Kottman constant; Orlicz sequence spaces; gauge norm; Orlicz norm

UR - http://eudml.org/doc/216453

ER -

## References

top- [1] J. A. C. Burlak, R. A. Rankin and A. P. Robertson, The packing of spheres in the space ${\ell}_{p}$, Proc. Glasgow Math. Assoc. 4 (1958), 22-25. Zbl0087.10801
- [2] C. E. Cleaver, On the extension of Lipschitz-Hölder maps on Orlicz spaces, Studia Math. 42 (1972), 195-204. Zbl0208.15005
- [3] C. E. Cleaver, Packing spheres in Orlicz spaces, Pacific J. Math. 65 (1976), 325-335. Zbl0315.46033
- [4] T. Domínguez Benavides and R. J. Rodríguez, Some geometric coefficients in Orlicz sequence spaces, Nonlinear Anal. 20 (1993), 349-358. Zbl0805.46009
- [5] J. Elton and E. Odell, The unit ball of every infinite dimensional normed linear space contains a (1+ε)-separated sequence, Colloq. Math. 44 (1981), 105-109. Zbl0493.46014
- [6] H. Hudzik, Every nonreflexive Banach lattice has the packing constant equal to 1/2, Collect. Math. 44 (1993), 131-135. Zbl0839.46011
- [7] C. A. Kottman, Packing and reflexivity in Banach spaces, Trans. Amer. Math. Soc. 150 (1970), 565-576. Zbl0208.37503
- [8] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
- [9] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I and II, Springer, Berlin, 1977 and 1979. Zbl0362.46013
- [10] W. Orlicz, Linear Functional Analysis, World Sci., 1992. [Original 1963.]
- [11] M. M. Rao, Interpolation, ergodicity and martingales, J. Math. Mech. 16 (1966), 543-567. Zbl0166.11704
- [12] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991. Zbl0724.46032
- [13] Z. D. Ren, Packing in Orlicz function spaces, Ph.D. Dissertation, University of California, Riverside, 1994.
- [14] T. F. Wang, Packing constants of Orlicz sequence spaces, Chinese Ann. Math. Ser. A 8 (1987), 508-513 (in Chinese). Zbl0651.46029
- [15] T. F. Wang and Y. M. Liu, Packing constant of a type of sequence spaces, Comment. Math. Prace Mat. 30 (1990), 197-203. Zbl0756.46008
- [16] Y. N. Ye, Packing spheres in Orlicz sequence spaces, Chinese Ann. Math. Ser. A 4 (1983), 487-493 (in Chinese).
- [17] Y. N. Ye and Y. H. Li, Geometric equivalence relation of reflexivity in Orlicz sequence space, Northeastern Math. J. 3 (1986), 309-323 (in Chinese). Zbl0641.46008

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.