Riesz angles of Orlicz sequence spaces
Commentationes Mathematicae Universitatis Carolinae (2002)
- Volume: 43, Issue: 1, page 133-147
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topYan, Ya Qiang. "Riesz angles of Orlicz sequence spaces." Commentationes Mathematicae Universitatis Carolinae 43.1 (2002): 133-147. <http://eudml.org/doc/248971>.
@article{Yan2002,
abstract = {We introduce some practical calculation of the Riesz angles in Orlicz sequence spaces equipped with Luxemburg norm and Orlicz norm. For an $N$-function $\Phi (u)$ whose index function is monotonous, the exact value $a(l^\{(\Phi )\})$ of the Orlicz sequence space with Luxemburg norm is $a(l^\{(\Phi )\})=2^\{\frac\{1\}\{C^0_\{\Phi \}\}\}$ or $a(l^\{(\Phi )\})=\frac\{\Phi ^\{-1\}(1)\}\{\Phi ^\{-1\}(\frac\{1\}\{2\})\}$. The Riesz angles of Orlicz space $l^\Phi $ with Orlicz norm has the estimation $\max (2\beta ^0_\{\Psi \}, 2\beta ^\{\prime \}_\{\Psi \})\le a(l^\{\Phi \}) \le \frac\{2\}\{\theta ^0_\{\Phi \}\}$.},
author = {Yan, Ya Qiang},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Orlicz space; $N$-function; index function; Riesz angle; Orlicz space; -function; index function; Riesz angle},
language = {eng},
number = {1},
pages = {133-147},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Riesz angles of Orlicz sequence spaces},
url = {http://eudml.org/doc/248971},
volume = {43},
year = {2002},
}
TY - JOUR
AU - Yan, Ya Qiang
TI - Riesz angles of Orlicz sequence spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 1
SP - 133
EP - 147
AB - We introduce some practical calculation of the Riesz angles in Orlicz sequence spaces equipped with Luxemburg norm and Orlicz norm. For an $N$-function $\Phi (u)$ whose index function is monotonous, the exact value $a(l^{(\Phi )})$ of the Orlicz sequence space with Luxemburg norm is $a(l^{(\Phi )})=2^{\frac{1}{C^0_{\Phi }}}$ or $a(l^{(\Phi )})=\frac{\Phi ^{-1}(1)}{\Phi ^{-1}(\frac{1}{2})}$. The Riesz angles of Orlicz space $l^\Phi $ with Orlicz norm has the estimation $\max (2\beta ^0_{\Psi }, 2\beta ^{\prime }_{\Psi })\le a(l^{\Phi }) \le \frac{2}{\theta ^0_{\Phi }}$.
LA - eng
KW - Orlicz space; $N$-function; index function; Riesz angle; Orlicz space; -function; index function; Riesz angle
UR - http://eudml.org/doc/248971
ER -
References
top- Benavides T.D., Rodriguez R.J., Some geometric coefficients in Orlicz sequence spaces, Nonlinear Anal. 20 (1993), 349-358. (1993) Zbl0805.46009MR1206424
- Borwein J.M., Sims B., Non-expansive mappings on Banach lattices and related topics, Houston J. Math. 10 (1984), 339-356. (1984) Zbl0584.47055MR0763236
- Chen S.T., Geometry of Orlicz spaces, Dissertationes Mathematicae, Warszawa, 1996. Zbl1089.46500MR1410390
- Cui Y., Hudzik H., Li Y., On the Garcia-Falset coefficient in some Banach sequence spaces, Function Spaces and Applications, 1999. Zbl0962.46011MR1772119
- Lindenstrauss J., Tzafriri L., Classical Banach Spaces, (I) and (II), Berlin-Heidelberg-New York, Springer-Verlag, 1977 and 1979. Zbl0852.46015MR0500056
- Maligranda L., Orlicz Spaces and Interpolation, Seminars in Mathematics 5, Univ. Estadual de Campinas, Capinas SP Brasil, 1989. Zbl0874.46022MR2264389
- Semenov E.M., A new interpolation theorem (in Russian), Funkctional. Anal. i Prilozhen. 2 (1968), 158-169. (1968) MR0236694
- Simonenko I.B., Interpolation and extrapolation of linear operators in Orlicz spaces, Mat. Sb. 63 (1964), 536-553. (1964) MR0199696
- Rao M.M., Ren Z.D., Packing in Orlicz sequence spaces, Studia Math. 126 (1997), 235-251. (1997) MR1475921
- Yan Y.Q., Some results on packing in Orlicz sequence spaces, Studia Math. 147 (2001), 73-88. (2001) Zbl0986.46004MR1853478
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.