Riesz angles of Orlicz sequence spaces

Ya Qiang Yan

Commentationes Mathematicae Universitatis Carolinae (2002)

  • Volume: 43, Issue: 1, page 133-147
  • ISSN: 0010-2628

Abstract

top
We introduce some practical calculation of the Riesz angles in Orlicz sequence spaces equipped with Luxemburg norm and Orlicz norm. For an N -function Φ ( u ) whose index function is monotonous, the exact value a ( l ( Φ ) ) of the Orlicz sequence space with Luxemburg norm is a ( l ( Φ ) ) = 2 1 C Φ 0 or a ( l ( Φ ) ) = Φ - 1 ( 1 ) Φ - 1 ( 1 2 ) . The Riesz angles of Orlicz space l Φ with Orlicz norm has the estimation max ( 2 β Ψ 0 , 2 β Ψ ' ) a ( l Φ ) 2 θ Φ 0 .

How to cite

top

Yan, Ya Qiang. "Riesz angles of Orlicz sequence spaces." Commentationes Mathematicae Universitatis Carolinae 43.1 (2002): 133-147. <http://eudml.org/doc/248971>.

@article{Yan2002,
abstract = {We introduce some practical calculation of the Riesz angles in Orlicz sequence spaces equipped with Luxemburg norm and Orlicz norm. For an $N$-function $\Phi (u)$ whose index function is monotonous, the exact value $a(l^\{(\Phi )\})$ of the Orlicz sequence space with Luxemburg norm is $a(l^\{(\Phi )\})=2^\{\frac\{1\}\{C^0_\{\Phi \}\}\}$ or $a(l^\{(\Phi )\})=\frac\{\Phi ^\{-1\}(1)\}\{\Phi ^\{-1\}(\frac\{1\}\{2\})\}$. The Riesz angles of Orlicz space $l^\Phi $ with Orlicz norm has the estimation $\max (2\beta ^0_\{\Psi \}, 2\beta ^\{\prime \}_\{\Psi \})\le a(l^\{\Phi \}) \le \frac\{2\}\{\theta ^0_\{\Phi \}\}$.},
author = {Yan, Ya Qiang},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Orlicz space; $N$-function; index function; Riesz angle; Orlicz space; -function; index function; Riesz angle},
language = {eng},
number = {1},
pages = {133-147},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Riesz angles of Orlicz sequence spaces},
url = {http://eudml.org/doc/248971},
volume = {43},
year = {2002},
}

TY - JOUR
AU - Yan, Ya Qiang
TI - Riesz angles of Orlicz sequence spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2002
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 43
IS - 1
SP - 133
EP - 147
AB - We introduce some practical calculation of the Riesz angles in Orlicz sequence spaces equipped with Luxemburg norm and Orlicz norm. For an $N$-function $\Phi (u)$ whose index function is monotonous, the exact value $a(l^{(\Phi )})$ of the Orlicz sequence space with Luxemburg norm is $a(l^{(\Phi )})=2^{\frac{1}{C^0_{\Phi }}}$ or $a(l^{(\Phi )})=\frac{\Phi ^{-1}(1)}{\Phi ^{-1}(\frac{1}{2})}$. The Riesz angles of Orlicz space $l^\Phi $ with Orlicz norm has the estimation $\max (2\beta ^0_{\Psi }, 2\beta ^{\prime }_{\Psi })\le a(l^{\Phi }) \le \frac{2}{\theta ^0_{\Phi }}$.
LA - eng
KW - Orlicz space; $N$-function; index function; Riesz angle; Orlicz space; -function; index function; Riesz angle
UR - http://eudml.org/doc/248971
ER -

References

top
  1. Benavides T.D., Rodriguez R.J., Some geometric coefficients in Orlicz sequence spaces, Nonlinear Anal. 20 (1993), 349-358. (1993) Zbl0805.46009MR1206424
  2. Borwein J.M., Sims B., Non-expansive mappings on Banach lattices and related topics, Houston J. Math. 10 (1984), 339-356. (1984) Zbl0584.47055MR0763236
  3. Chen S.T., Geometry of Orlicz spaces, Dissertationes Mathematicae, Warszawa, 1996. Zbl1089.46500MR1410390
  4. Cui Y., Hudzik H., Li Y., On the Garcia-Falset coefficient in some Banach sequence spaces, Function Spaces and Applications, 1999. Zbl0962.46011MR1772119
  5. Lindenstrauss J., Tzafriri L., Classical Banach Spaces, (I) and (II), Berlin-Heidelberg-New York, Springer-Verlag, 1977 and 1979. Zbl0852.46015MR0500056
  6. Maligranda L., Orlicz Spaces and Interpolation, Seminars in Mathematics 5, Univ. Estadual de Campinas, Capinas SP Brasil, 1989. Zbl0874.46022MR2264389
  7. Semenov E.M., A new interpolation theorem (in Russian), Funkctional. Anal. i Prilozhen. 2 (1968), 158-169. (1968) MR0236694
  8. Simonenko I.B., Interpolation and extrapolation of linear operators in Orlicz spaces, Mat. Sb. 63 (1964), 536-553. (1964) MR0199696
  9. Rao M.M., Ren Z.D., Packing in Orlicz sequence spaces, Studia Math. 126 (1997), 235-251. (1997) MR1475921
  10. Yan Y.Q., Some results on packing in Orlicz sequence spaces, Studia Math. 147 (2001), 73-88. (2001) Zbl0986.46004MR1853478

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.