Complemented subspaces with a strong finite-dimensional decomposition of nuclear Köthe spaces have a basis

Jörg Krone; Volker Walldorf

Studia Mathematica (1998)

  • Volume: 127, Issue: 1, page 1-7
  • ISSN: 0039-3223

Abstract

top
The following result is proved: Let E be a complemented subspace with an r-finite-dimensional decomposition of a nuclear Köthe space λ(A). Then E has a basis.

How to cite

top

Krone, Jörg, and Walldorf, Volker. "Complemented subspaces with a strong finite-dimensional decomposition of nuclear Köthe spaces have a basis." Studia Mathematica 127.1 (1998): 1-7. <http://eudml.org/doc/216457>.

@article{Krone1998,
abstract = {The following result is proved: Let E be a complemented subspace with an r-finite-dimensional decomposition of a nuclear Köthe space λ(A). Then E has a basis.},
author = {Krone, Jörg, Walldorf, Volker},
journal = {Studia Mathematica},
keywords = {nuclear Köthe spaces; basis; finite-dimensional decomposition; complemented subspaces; Köthe matrix; Fréchet space; Grothendieck-Pietsch criterion},
language = {eng},
number = {1},
pages = {1-7},
title = {Complemented subspaces with a strong finite-dimensional decomposition of nuclear Köthe spaces have a basis},
url = {http://eudml.org/doc/216457},
volume = {127},
year = {1998},
}

TY - JOUR
AU - Krone, Jörg
AU - Walldorf, Volker
TI - Complemented subspaces with a strong finite-dimensional decomposition of nuclear Köthe spaces have a basis
JO - Studia Mathematica
PY - 1998
VL - 127
IS - 1
SP - 1
EP - 7
AB - The following result is proved: Let E be a complemented subspace with an r-finite-dimensional decomposition of a nuclear Köthe space λ(A). Then E has a basis.
LA - eng
KW - nuclear Köthe spaces; basis; finite-dimensional decomposition; complemented subspaces; Köthe matrix; Fréchet space; Grothendieck-Pietsch criterion
UR - http://eudml.org/doc/216457
ER -

References

top
  1. [1] C. Bessaga, Some remarks on Dragilev's theorem, Studia Math. 31 (1968), 307-318. Zbl0182.45301
  2. [2] P. B. Djakov and E. Dubinsky, Complemented block subspaces of Köthe spaces, Serdica 14 (1988), 278-282. 
  3. [3] P. B. Djakov and B. S. Mityagin, Modified construction of a nuclear Fréchet space without basis, J. Funct. Anal. 23 (1976), 415-423. 
  4. [4] E. Dubinsky, Subspaces without basis in nuclear Fréchet spaces, J. Funct. Anal. 26 (1977), 121-130. Zbl0444.46005
  5. [5] E. Dubinsky, The Structure of Nuclear Fréchet Spaces, Lecture Notes in Math. 720, Springer, Berlin, 1979. Zbl0403.46005
  6. [6] E. Dubinsky and B. S. Mityagin, Quotient spaces without basis in nuclear Fréchet spaces, Canad. J. Math. 30 (1978), 1296-1305. Zbl0399.46003
  7. [7] G. Köthe, Topologische lineare Räume, Springer, 1960. Zbl0093.11901
  8. [8] J. Krone, On Pełczyński's problem, in: Advances in the Theory of Fréchet Spaces, T. Terzioğlu (ed.), NATO Adv. Sci. Inst. Ser. C 287, Kluwer Acad. Publ., 1989, 297-304. Zbl0804.46005
  9. [9] R. Meise und D. Vogt, Einführung in die Funktionalanalysis, Vieweg, 1992. 
  10. [10] A. Pełczyński, Problem 37, Studia Math. 38 (1970), 476. 
  11. [11] A. Pietsch, Nuclear Locally Convex Spaces, Ergeb. Math. 66, Springer, 1972. 
  12. [12] M. J. Wagner, Some new methods in the structure theory of nuclear Fréchet spaces, in: Advances in the Theory of Fréchet spaces, T. Terzioğlu (ed.), NATO Adv. Sci. Inst. Ser. C 287, Kluwer Acad. Publ., 1989, 333-354. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.