Harmonic extensions and the Böttcher-Silbermann conjecture

P. Gorkin; D. Zheng

Studia Mathematica (1998)

  • Volume: 127, Issue: 3, page 201-222
  • ISSN: 0039-3223

Abstract

top
We present counterexamples to a conjecture of Böttcher and Silbermann on the asymptotic multiplicity of the Poisson kernel of the space L ( D ) and discuss conditions under which the Poisson kernel is asymptotically multiplicative.

How to cite

top

Gorkin, P., and Zheng, D.. "Harmonic extensions and the Böttcher-Silbermann conjecture." Studia Mathematica 127.3 (1998): 201-222. <http://eudml.org/doc/216468>.

@article{Gorkin1998,
abstract = {We present counterexamples to a conjecture of Böttcher and Silbermann on the asymptotic multiplicity of the Poisson kernel of the space $L^∞(∂D)$ and discuss conditions under which the Poisson kernel is asymptotically multiplicative.},
author = {Gorkin, P., Zheng, D.},
journal = {Studia Mathematica},
keywords = {Böttcher-Silbermann conjecture; Poisson kernel; asymptotically multiplicative},
language = {eng},
number = {3},
pages = {201-222},
title = {Harmonic extensions and the Böttcher-Silbermann conjecture},
url = {http://eudml.org/doc/216468},
volume = {127},
year = {1998},
}

TY - JOUR
AU - Gorkin, P.
AU - Zheng, D.
TI - Harmonic extensions and the Böttcher-Silbermann conjecture
JO - Studia Mathematica
PY - 1998
VL - 127
IS - 3
SP - 201
EP - 222
AB - We present counterexamples to a conjecture of Böttcher and Silbermann on the asymptotic multiplicity of the Poisson kernel of the space $L^∞(∂D)$ and discuss conditions under which the Poisson kernel is asymptotically multiplicative.
LA - eng
KW - Böttcher-Silbermann conjecture; Poisson kernel; asymptotically multiplicative
UR - http://eudml.org/doc/216468
ER -

References

top
  1. [1] S. Axler, S.-Y. A. Chang and D. Sarason, Products of Toeplitz operators, Integral Equations Operator Theory 1 (1978), 285-309. Zbl0396.47017
  2. [2] S. Axler and Ž. Čučković, Commuting Toeplitz operators with harmonic symbols, ibid. 14 (1991), 1-12. Zbl0733.47027
  3. [3] S. Axler and P. Gorkin, Divisibility in Douglas algebras, Michigan Math. J. 31 (1984), 89-94. Zbl0597.46054
  4. [4] S. Axler and P. Gorkin, Algebras on the disk and doubly commuting multiplication operators, Trans. Amer. Math. Soc. 309 (1988), 711-723. Zbl0706.46040
  5. [5] S. Axler and D. Zheng, The Berezin transform on the Toeplitz algebra, Studia Math. 127 (1998), 113-136. Zbl0915.47022
  6. [6] A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, Akademie-Verlag, 1989, and Springer, 1990. Zbl0689.45009
  7. [7] A. Böttcher and B. Silbermann, Axler-Chang-Sarason-Volberg Theorems for harmonic approximation and stable convergence, in: Linear and Complex Analysis Problem Book 3, Part I, V. P. Havin and N. K. Nikol'skiĭ (eds.), Lecture Notes in Math. 1573, Springer, 1994, 340-341. 
  8. [8] P. Budde, Support sets and Gleason parts of M ( H ) , thesis, Univ. of California, Berkeley, 1982. 
  9. [9] S.-Y. A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), 81-89. Zbl0332.46035
  10. [10] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972. Zbl0247.47001
  11. [11] R. G. Douglas, Banach Algebra Techniques in the Theory of Toeplitz Operators, Regional Conf. Ser. in Math. 15, Amer. Math. Soc., 1972. 
  12. [12] T. W. Gamelin, Uniform Algebras, 2nd ed., Chelsea, 1984. 
  13. [13] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. Zbl0469.30024
  14. [14] P. Gorkin, Decompositions of the maximal ideal space of L , doctoral dissertation, Michigan State Univ., 1982. 
  15. [15] P. Gorkin, Hankel type operators, Bourgain algebras, and uniform algebras, preprint. Zbl1128.47307
  16. [16] P. Gorkin and K. Izuchi, Some counterexamples in subalgebras of L , Indiana Univ. Math. J. 40 (1991), 1301-1313. 
  17. [17] P. Gorkin and R. Mortini, Interpolating Blaschke products and factorization in Douglas algebras, Michigan Math. J. 38 (1991), 147-160. Zbl0781.46037
  18. [18] P. Gorkin and D. Zheng, Essentially commuting Toeplitz operators, preprint. 
  19. [19] C. Guillory and K. Izuchi, Interpolating Blaschke products of type G, Complex Variables Theory Appl. 31 (1996), 51-64. 
  20. [20] C. Guillory, K. Izuchi and D. Sarason, Interpolating Blaschke products and division in Douglas algebras, Proc. Roy. Irish Acad. Sect. A 84 (1984), 1-7. Zbl0559.46022
  21. [21] K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271-317. Zbl0107.33102
  22. [22] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111. Zbl0192.48302
  23. [23] G. M. Leibowitz, Lectures on Complex Function Algebras, Scott, Foresman & Co. Glenview, IL, 1970. Zbl0219.46037
  24. [24] D. E. Marshall, Subalgebras of L containing H , Acta Math. 137 (1976), 91-98. 
  25. [25] R. Mortini and V. Tolokonnikov, Blaschke products of Sundberg-Wolff type, Complex Variables Theory Appl. 30 (1996), 373-384. Zbl0885.46046
  26. [26] N. K. Nikol'skiĭ, Treatise on the Shift Operator, Springer, New York, 1985. 
  27. [27] D. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286-299. Zbl0257.46079
  28. [28] D. Sarason, Algebras between L and H , in: Spaces of Analytic Functions, Lecture Notes in Math. 512, Springer, 1976, 117-129. 
  29. [29] C. Sundberg and T. Wolff, Interpolating sequences for Q A B , Trans. Amer. Math. Soc. 276 (1983), 551-581. Zbl0536.30025
  30. [30] A. Volberg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang, and D. Sarason, J. Operator Theory 8 (1982), 209-218. Zbl0489.47015
  31. [31] R. Younis and D. Zheng, Algebras generated by bounded analytic and harmonic functions and applications, preprint. 
  32. [32] D. Zheng, The distribution function inequality and products of Toeplitz operators and Hankel operators, J. Funct. Anal. 138 (1996), 477-501. Zbl0865.47019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.