Harmonic extensions and the Böttcher-Silbermann conjecture
Studia Mathematica (1998)
- Volume: 127, Issue: 3, page 201-222
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topGorkin, P., and Zheng, D.. "Harmonic extensions and the Böttcher-Silbermann conjecture." Studia Mathematica 127.3 (1998): 201-222. <http://eudml.org/doc/216468>.
@article{Gorkin1998,
abstract = {We present counterexamples to a conjecture of Böttcher and Silbermann on the asymptotic multiplicity of the Poisson kernel of the space $L^∞(∂D)$ and discuss conditions under which the Poisson kernel is asymptotically multiplicative.},
author = {Gorkin, P., Zheng, D.},
journal = {Studia Mathematica},
keywords = {Böttcher-Silbermann conjecture; Poisson kernel; asymptotically multiplicative},
language = {eng},
number = {3},
pages = {201-222},
title = {Harmonic extensions and the Böttcher-Silbermann conjecture},
url = {http://eudml.org/doc/216468},
volume = {127},
year = {1998},
}
TY - JOUR
AU - Gorkin, P.
AU - Zheng, D.
TI - Harmonic extensions and the Böttcher-Silbermann conjecture
JO - Studia Mathematica
PY - 1998
VL - 127
IS - 3
SP - 201
EP - 222
AB - We present counterexamples to a conjecture of Böttcher and Silbermann on the asymptotic multiplicity of the Poisson kernel of the space $L^∞(∂D)$ and discuss conditions under which the Poisson kernel is asymptotically multiplicative.
LA - eng
KW - Böttcher-Silbermann conjecture; Poisson kernel; asymptotically multiplicative
UR - http://eudml.org/doc/216468
ER -
References
top- [1] S. Axler, S.-Y. A. Chang and D. Sarason, Products of Toeplitz operators, Integral Equations Operator Theory 1 (1978), 285-309. Zbl0396.47017
- [2] S. Axler and Ž. Čučković, Commuting Toeplitz operators with harmonic symbols, ibid. 14 (1991), 1-12. Zbl0733.47027
- [3] S. Axler and P. Gorkin, Divisibility in Douglas algebras, Michigan Math. J. 31 (1984), 89-94. Zbl0597.46054
- [4] S. Axler and P. Gorkin, Algebras on the disk and doubly commuting multiplication operators, Trans. Amer. Math. Soc. 309 (1988), 711-723. Zbl0706.46040
- [5] S. Axler and D. Zheng, The Berezin transform on the Toeplitz algebra, Studia Math. 127 (1998), 113-136. Zbl0915.47022
- [6] A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, Akademie-Verlag, 1989, and Springer, 1990. Zbl0689.45009
- [7] A. Böttcher and B. Silbermann, Axler-Chang-Sarason-Volberg Theorems for harmonic approximation and stable convergence, in: Linear and Complex Analysis Problem Book 3, Part I, V. P. Havin and N. K. Nikol'skiĭ (eds.), Lecture Notes in Math. 1573, Springer, 1994, 340-341.
- [8] P. Budde, Support sets and Gleason parts of , thesis, Univ. of California, Berkeley, 1982.
- [9] S.-Y. A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), 81-89. Zbl0332.46035
- [10] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972. Zbl0247.47001
- [11] R. G. Douglas, Banach Algebra Techniques in the Theory of Toeplitz Operators, Regional Conf. Ser. in Math. 15, Amer. Math. Soc., 1972.
- [12] T. W. Gamelin, Uniform Algebras, 2nd ed., Chelsea, 1984.
- [13] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. Zbl0469.30024
- [14] P. Gorkin, Decompositions of the maximal ideal space of , doctoral dissertation, Michigan State Univ., 1982.
- [15] P. Gorkin, Hankel type operators, Bourgain algebras, and uniform algebras, preprint. Zbl1128.47307
- [16] P. Gorkin and K. Izuchi, Some counterexamples in subalgebras of , Indiana Univ. Math. J. 40 (1991), 1301-1313.
- [17] P. Gorkin and R. Mortini, Interpolating Blaschke products and factorization in Douglas algebras, Michigan Math. J. 38 (1991), 147-160. Zbl0781.46037
- [18] P. Gorkin and D. Zheng, Essentially commuting Toeplitz operators, preprint.
- [19] C. Guillory and K. Izuchi, Interpolating Blaschke products of type G, Complex Variables Theory Appl. 31 (1996), 51-64.
- [20] C. Guillory, K. Izuchi and D. Sarason, Interpolating Blaschke products and division in Douglas algebras, Proc. Roy. Irish Acad. Sect. A 84 (1984), 1-7. Zbl0559.46022
- [21] K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math. 108 (1962), 271-317. Zbl0107.33102
- [22] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111. Zbl0192.48302
- [23] G. M. Leibowitz, Lectures on Complex Function Algebras, Scott, Foresman & Co. Glenview, IL, 1970. Zbl0219.46037
- [24] D. E. Marshall, Subalgebras of containing , Acta Math. 137 (1976), 91-98.
- [25] R. Mortini and V. Tolokonnikov, Blaschke products of Sundberg-Wolff type, Complex Variables Theory Appl. 30 (1996), 373-384. Zbl0885.46046
- [26] N. K. Nikol'skiĭ, Treatise on the Shift Operator, Springer, New York, 1985.
- [27] D. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286-299. Zbl0257.46079
- [28] D. Sarason, Algebras between and , in: Spaces of Analytic Functions, Lecture Notes in Math. 512, Springer, 1976, 117-129.
- [29] C. Sundberg and T. Wolff, Interpolating sequences for , Trans. Amer. Math. Soc. 276 (1983), 551-581. Zbl0536.30025
- [30] A. Volberg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang, and D. Sarason, J. Operator Theory 8 (1982), 209-218. Zbl0489.47015
- [31] R. Younis and D. Zheng, Algebras generated by bounded analytic and harmonic functions and applications, preprint.
- [32] D. Zheng, The distribution function inequality and products of Toeplitz operators and Hankel operators, J. Funct. Anal. 138 (1996), 477-501. Zbl0865.47019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.