Intrinsic characterizations of distribution spaces on domains

V. Rychkov

Studia Mathematica (1998)

  • Volume: 127, Issue: 3, page 277-298
  • ISSN: 0039-3223

Abstract

top
We give characterizations of Besov and Triebel-Lizorkin spaces B p q s ( ) and F p q s ( ) in smooth domains n via convolutions with compactly supported smooth kernels satisfying some moment conditions. The results for s ∈ ℝ, 0 < p,q ≤ ∞ are stated in terms of the mixed norm of a certain maximal function of a distribution. For s ∈ ℝ, 1 ≤ p ≤ ∞, 0 < q ≤ ∞ characterizations without use of maximal functions are also obtained.

How to cite

top

Rychkov, V.. "Intrinsic characterizations of distribution spaces on domains." Studia Mathematica 127.3 (1998): 277-298. <http://eudml.org/doc/216472>.

@article{Rychkov1998,
abstract = {We give characterizations of Besov and Triebel-Lizorkin spaces $B_\{pq\}^\{s\}(Ω)$ and $F_\{pq\}^s(Ω)$ in smooth domains $Ω ⊂ ℝ^n$ via convolutions with compactly supported smooth kernels satisfying some moment conditions. The results for s ∈ ℝ, 0 < p,q ≤ ∞ are stated in terms of the mixed norm of a certain maximal function of a distribution. For s ∈ ℝ, 1 ≤ p ≤ ∞, 0 < q ≤ ∞ characterizations without use of maximal functions are also obtained.},
author = {Rychkov, V.},
journal = {Studia Mathematica},
keywords = {Besov spaces; Triebel-Lizorkin spaces; spaces on domains; intrinsic characterizations; local means; maximal functions; characterizations of Besov and Triebel-Lizorkin spaces; convolutions with compactly supported smooth kernels; moment conditions; maximal function of a distribution},
language = {eng},
number = {3},
pages = {277-298},
title = {Intrinsic characterizations of distribution spaces on domains},
url = {http://eudml.org/doc/216472},
volume = {127},
year = {1998},
}

TY - JOUR
AU - Rychkov, V.
TI - Intrinsic characterizations of distribution spaces on domains
JO - Studia Mathematica
PY - 1998
VL - 127
IS - 3
SP - 277
EP - 298
AB - We give characterizations of Besov and Triebel-Lizorkin spaces $B_{pq}^{s}(Ω)$ and $F_{pq}^s(Ω)$ in smooth domains $Ω ⊂ ℝ^n$ via convolutions with compactly supported smooth kernels satisfying some moment conditions. The results for s ∈ ℝ, 0 < p,q ≤ ∞ are stated in terms of the mixed norm of a certain maximal function of a distribution. For s ∈ ℝ, 1 ≤ p ≤ ∞, 0 < q ≤ ∞ characterizations without use of maximal functions are also obtained.
LA - eng
KW - Besov spaces; Triebel-Lizorkin spaces; spaces on domains; intrinsic characterizations; local means; maximal functions; characterizations of Besov and Triebel-Lizorkin spaces; convolutions with compactly supported smooth kernels; moment conditions; maximal function of a distribution
UR - http://eudml.org/doc/216472
ER -

References

top
  1. [Bes1] O. V. Besov, On a family of function spaces. Embedding theorems and extensions, Dokl. Akad. Nauk SSSR 126 (1959), 1163-1165 (in Russian). Zbl0097.09701
  2. [Bes2] O. V. Besov, On a family of function spaces in connection with embeddings and extensions, Trudy Mat. Inst. Steklov. 60 (1961), 42-81 (in Russian). 
  3. [Bes3] O. V. Besov, Extension of functions beyond a domain with preservation of difference-differential properties in L p , Mat. Sb. 66 (1965), 80-96 (in Russian). 
  4. [Bes4] O. V. Besov, Embeddings of Sobolev-Liouville and Lizorkin-Triebel spaces on a domain, Dokl. Akad. Nauk 331 (1993), 538-540 (in Russian). Zbl0835.46024
  5. [BIN] O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral Representations of Functions and Embedding Theorems, 2nd ed., Nauka-Fizmatgiz, Moscow, 1996 (in Russian). 
  6. [BPT1] H.-Q. Bui, M. Paluszyński and M. H. Taibleson, A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces, Studia Math. 119 (1996), 219-246. Zbl0861.42009
  7. [BPT2] H.-Q. Bui, M. Paluszyński and M. H. Taibleson, Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces. The case q < 1, in: Proc. Conf. on Harmonic Analysis in Honor of M. de Guzmán (El Escorial, 1996), to appear. Zbl0861.42009
  8. [CKS] D.-C. Chang, S. G. Krantz and E. M. Stein, H p theory on a smooth domain in n and elliptic boundary value problems, J. Funct. Anal. 114 (1993), 286-347. Zbl0804.35027
  9. [FeS] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. Zbl0222.26019
  10. [FrR] J. Franke and T. Runst, Regular elliptic boundary value problems in Besov-Triebel-Lizorkin spaces, Math. Nachr. 174 (1995), 113-149. Zbl0843.35026
  11. [FrJ] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), 34-170. Zbl0716.46031
  12. [Hei] N. J. H. Heideman, Duality and fractional integration in Lipschitz spaces, Studia Math. 50 (1974), 65-85. Zbl0287.46050
  13. [Hes] M. Hestenes, Extension of the range of a differentiable function, Duke Math. J. 8 (1941), 183-192. 
  14. [Kal1] G. A. Kalyabin, Function spaces of Lizorkin-Triebel type in domains with Lipschitz boundary, Dokl. Akad. Nauk SSSR 271 (1983), 795-798 (in Russian). 
  15. [Kal2] G. A. Kalyabin, Theorems on extensions, multipliers and diffeomorphisms for generalized Sobolev-Liouville classes in domains with Lipschitz boundary, Trudy Mat. Inst. Steklov. 172 (1985), 173-186 (in Russian). 
  16. [Kal3] G. A. Kalyabin, personal communication, 1994. 
  17. [Liz1] P. I. Lizorkin, Operators connected with fractional derivatives and classes of differentiable functions, Trudy Mat. Inst. Steklov. 117 (1972), 212-243 (in Russian). 
  18. [Liz2] P. I. Lizorkin, Properties of functions of the spaces Λ p r θ , ibid. 131 (1974), 158-181 (in Russian). 
  19. [Miy] A. Miyachi, H p spaces over open subsets of n , Studia Math. 95 (1990), 205-228. 
  20. [Mur] T. Muramatu, On Besov spaces and Sobolev spaces of generalized functions defined on a general region, Publ. Res. Inst. Math. Sci. Kyoto Univ. 9 (1974), 325-396. Zbl0287.46046
  21. [P1] J. Peetre, Remarques sur les espaces de Besov. Le cas 0 < p < 1, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), 947-950. 
  22. [P2] J. Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123-130. Zbl0302.46021
  23. [Rud] W. Rudin, Functional Analysis, 2nd ed., McGraw-Hill, New York, 1991. 
  24. [Ry] V. S. Rychkov, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains, preprint. 
  25. [Sch] T. Schott, Function spaces with exponential weights I, Math. Nachr., to appear. Zbl0909.46036
  26. [See] A. Seeger, A note on Triebel-Lizorkin spaces, in: Approximation and Function Spaces, Banach Center Publ. 22, PWN-Polish Sci. Publ., Warszawa, 1989, 391-400. 
  27. [StT] J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, Berlin, 1989. 
  28. [Tai] M. H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean n-space I. Principal properties, J. Math. Mech. 13 (1964), 407-479. Zbl0132.09402
  29. [Tri1] H. Triebel, Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation, Ark. Mat. 11 (1973), 13-64. 
  30. [Tri2] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983. 
  31. [Tri3] H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992. 
  32. [Tri4] H. Triebel, Local approximation spaces, Z. Anal. Anwendungen 8 (1989), 261-288. Zbl0695.46015
  33. [TrW] H. Triebel and H. Winkelvoß, Intrinsic atomic characterizations of function spaces on domains, Math. Z. 221 (1996), 647-673. Zbl0843.46022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.