A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces.

H.-Q. Bui; M. Paluszyński; M. Taibleson

Studia Mathematica (1996)

  • Volume: 119, Issue: 3, page 219-246
  • ISSN: 0039-3223

Abstract

top
We give characterizations of weighted Besov-Lipschitz and Triebel-Lizorkin spaces with A weights via a smooth kernel which satisfies “minimal” moment and Tauberian conditions. The results are stated in terms of the mixed norm of a certain maximal function of a distribution in these weighted spaces.

How to cite

top

Bui, H.-Q., Paluszyński, M., and Taibleson, M.. "A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces.." Studia Mathematica 119.3 (1996): 219-246. <http://eudml.org/doc/216297>.

@article{Bui1996,
abstract = {We give characterizations of weighted Besov-Lipschitz and Triebel-Lizorkin spaces with $A_∞$ weights via a smooth kernel which satisfies “minimal” moment and Tauberian conditions. The results are stated in terms of the mixed norm of a certain maximal function of a distribution in these weighted spaces.},
author = {Bui, H.-Q., Paluszyński, M., Taibleson, M.},
journal = {Studia Mathematica},
keywords = {Besov-Lipschitz space; Triebel-Lizorkin space; Littlewood-Paley function; Calderón representation theorem; $A_∞$ weight; Calderón representation; weighted Triebel-Lizorkin spaces; weights; space of test functions; space of tempered distributions; weighted homogeneous Besov-Lipschitz spaces; maximal function of Peetre and Triebel},
language = {eng},
number = {3},
pages = {219-246},
title = {A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces.},
url = {http://eudml.org/doc/216297},
volume = {119},
year = {1996},
}

TY - JOUR
AU - Bui, H.-Q.
AU - Paluszyński, M.
AU - Taibleson, M.
TI - A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces.
JO - Studia Mathematica
PY - 1996
VL - 119
IS - 3
SP - 219
EP - 246
AB - We give characterizations of weighted Besov-Lipschitz and Triebel-Lizorkin spaces with $A_∞$ weights via a smooth kernel which satisfies “minimal” moment and Tauberian conditions. The results are stated in terms of the mixed norm of a certain maximal function of a distribution in these weighted spaces.
LA - eng
KW - Besov-Lipschitz space; Triebel-Lizorkin space; Littlewood-Paley function; Calderón representation theorem; $A_∞$ weight; Calderón representation; weighted Triebel-Lizorkin spaces; weights; space of test functions; space of tempered distributions; weighted homogeneous Besov-Lipschitz spaces; maximal function of Peetre and Triebel
UR - http://eudml.org/doc/216297
ER -

References

top
  1. [1] H.-Q. Bui, Weighted Besov and Triebel-Lizorkin spaces: Interpolation by the real method, Hiroshima Math. J. 12 (1982), 581-605. Zbl0525.46023
  2. [2] H.-Q. Bui, Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures, J. Funct. Anal. 55 (1984), 39-62. Zbl0636.46040
  3. [3] H.-Q. Bui, Weighted Young's inequality and convolution theorems on weighted Besov spaces, Math. Nachr. 170 (1994), 25-37. Zbl0844.46016
  4. [4] H.-Q. Bui, M. Paluszyński and M. H. Taibleson, A note on the Besov-Lipschitz and Triebel-Lizorkin spaces, in: Contemp. Math. 189, Amer. Math. Soc., 1995, 95-101. Zbl0849.46021
  5. [5] A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribution, I, II, Adv. in Math. 16 (1975), 1-64; 24 (1977), 101-171. Zbl0315.46037
  6. [6] C. Fefferman and E. M. Stein, H p spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
  7. [7] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), 34-170. Zbl0716.46031
  8. [8] N. J. H. Heideman, Duality and fractional integration in Lipschitz spaces, Studia Math. 50 (1974), 65-85. Zbl0287.46050
  9. [9] S. Janson and M. H. Taibleson, I teoremi di rappresentazione di Calderón, Rend. Sem. Mat. Univ. Politec. Torino 39 (1981), 27-35. 
  10. [10] V. M. Kokilašvili [V. M. Kokilashvili], Maximal inequalities and multipliers in weighted Triebel-Lizorkin spaces, Soviet Math. Dokl. 19 (1978), 272-276. Zbl0396.46034
  11. [11] J. Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123-130. Zbl0302.46021
  12. [12] J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Springer, Berlin, 1989. 
  13. [13] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983. 
  14. [14] H. Triebel, Characterizations of Besov-Hardy-Sobolev spaces: A unified approach, J. Approx. Theory 52 (1988), 162-203. Zbl0644.46017
  15. [15] H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.