# Discrete Hardy spaces

Studia Mathematica (1998)

- Volume: 129, Issue: 1, page 31-50
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topBoza, Santiago, and Carro, María. "Discrete Hardy spaces." Studia Mathematica 129.1 (1998): 31-50. <http://eudml.org/doc/216490>.

@article{Boza1998,

abstract = {We study various characterizations of the Hardy spaces $H^p(ℤ)$ via the discrete Hilbert transform and via maximal and square functions. Finally, we present the equivalence with the classical atomic characterization of $H^p(ℤ)$ given by Coifman and Weiss in [CW]. Our proofs are based on some results concerning functions of exponential type.},

author = {Boza, Santiago, Carro, María},

journal = {Studia Mathematica},

keywords = {Hardy spaces; discrete Hilbert transform; maximal operators},

language = {eng},

number = {1},

pages = {31-50},

title = {Discrete Hardy spaces},

url = {http://eudml.org/doc/216490},

volume = {129},

year = {1998},

}

TY - JOUR

AU - Boza, Santiago

AU - Carro, María

TI - Discrete Hardy spaces

JO - Studia Mathematica

PY - 1998

VL - 129

IS - 1

SP - 31

EP - 50

AB - We study various characterizations of the Hardy spaces $H^p(ℤ)$ via the discrete Hilbert transform and via maximal and square functions. Finally, we present the equivalence with the classical atomic characterization of $H^p(ℤ)$ given by Coifman and Weiss in [CW]. Our proofs are based on some results concerning functions of exponential type.

LA - eng

KW - Hardy spaces; discrete Hilbert transform; maximal operators

UR - http://eudml.org/doc/216490

ER -

## References

top- [AC] P. Auscher and M. J. Carro, On relations between operators on ${\mathbb{R}}^{N}$, ${}^{N}$ and ${\mathbb{Z}}^{N}$, Studia Math. 101 (1992), 165-182.
- [B] R. P. Boas, Entire Functions, Academic Press, 1954. Zbl0058.30201
- [C] R. Coifman, A real-variable characterization of ${H}^{p}$, Studia Math. 51 (1974), 269-274. Zbl0289.46037
- [CW] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. Zbl0358.30023
- [E] C. M. Eoff, The discrete nature of the Paley-Wiener spaces, Proc. Amer. Math. Soc. 123 (1995), 505-512. Zbl0820.30017
- [FS] C. Fefferman and E. Stein, ${H}^{p}$ spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
- [FJW] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. 79, Amer. Math. Soc., 1991. Zbl0757.42006
- [H] Y.-S. Han, Triebel-Lizorkin spaces on spaces of homogeneous type, Studia Math. 108 (1994), 247-273. Zbl0822.46033
- [MS] R. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math. 33 (1979), 271-309. Zbl0431.46019
- [M] A. Miyachi, On some Fourier multipliers for ${H}^{p}\left(\mathbb{R}\right)$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 157-179. Zbl0433.42019
- [S] C. E. Shannon, Communication in the presence of noise, Proc. IRE 37 (1949), 10-21.
- [Su] Q. Sun, Sequence spaces and stability of integer translates, Z. Anal. Anwendungen 12 (1993), 567-584. Zbl0801.46006
- [U] A. Uchiyama, A maximal function characterization of ${H}^{p}$ on the spaces of homogeneous type, Trans. Amer. Math. Soc. 262 (1980), 579-592. Zbl0503.46020

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.