# On relations between operators on R^{N}, T^{N} and Z^{N}

Studia Mathematica (1992)

- Volume: 101, Issue: 2, page 165-182
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topAuscher, P., and Carro, M.. "On relations between operators on R^{N}, T^{N} and Z^{N}." Studia Mathematica 101.2 (1992): 165-182. <http://eudml.org/doc/215899>.

@article{Auscher1992,

abstract = {We study different discrete versions of maximal operators and g-functions arising from a convolution operator on R. This allows us, in particular, to complete connections with the results of de Leeuw [L] and Kenig and Tomas [KT] in the setting of the groups R^\{N\}, T^\{N\} and Z^\{N\}.},

author = {Auscher, P., Carro, M.},

journal = {Studia Mathematica},

keywords = {maximal operators; -functions; convolution operator},

language = {eng},

number = {2},

pages = {165-182},

title = {On relations between operators on R^\{N\}, T^\{N\} and Z^\{N\}},

url = {http://eudml.org/doc/215899},

volume = {101},

year = {1992},

}

TY - JOUR

AU - Auscher, P.

AU - Carro, M.

TI - On relations between operators on R^{N}, T^{N} and Z^{N}

JO - Studia Mathematica

PY - 1992

VL - 101

IS - 2

SP - 165

EP - 182

AB - We study different discrete versions of maximal operators and g-functions arising from a convolution operator on R. This allows us, in particular, to complete connections with the results of de Leeuw [L] and Kenig and Tomas [KT] in the setting of the groups R^{N}, T^{N} and Z^{N}.

LA - eng

KW - maximal operators; -functions; convolution operator

UR - http://eudml.org/doc/215899

ER -

## References

top- [A] I. Assani, The Wiener-Wintner property for the Helical Transform of the shift on [0,1]^Z, preprint. Zbl0784.58036
- [AP] I. Assani and K. Petersen, The helical transform as a connection between ergodic theory and harmonic analysis, Trans. Amer. Math. Soc., to appear. Zbl0768.47001
- [B] R. P. Boas, Entire Functions, Academic Press, 1954. Zbl0058.30201
- [Bo] J. Bourgain, Pointwise ergodic theorems for arithmetic sets, IHES Publ. Math. 69 (1989), 5-45.
- [CP] J. Campbell and K. Petersen, The spectral measure and Hilbert transform of a measure-preserving transformation, Trans. Amer. Math. Soc. 313 (1989), 121-129. Zbl0675.28010
- [C] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157. Zbl0144.06402
- [CW] R. Coifman and G. Weiss, Transference methods in analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., 1977.
- [FS] R. Fefferman and F. Soria, The space Weak-H¹, Studia Math. 85 (1987), 1-16.
- [HL] G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. 54 (1930), 81-116. Zbl56.0264.02
- [H] R. Hunt, On the convergence of Fourier series, in: Orthogonal Expansions and their Continuous Analogues, Proc. Conf. Edwardsville 1967, Southern Illinois Univ. Press, Carbondale, Ill., 1968, 235-255.
- [KT] C. Kenig and P. Thomas, Maximal operators defined by Fourier multipliers, Studia Math. 68 (1980), 79-83. Zbl0442.42013
- [L] K. de Leeuw, On L_p multipliers, Ann. of Math. 81 (1965), 364-379. Zbl0171.11803
- [NRW1] A. Nagel, N. Rivière and S. Wainger, A maximal function associated to the curve (t,t²), Proc. Nat. Acad. Sci. U.S.A. 73 (5) (1976), 1416-1417. Zbl0325.43009
- [NRW2] A. Nagel, On Hilbert transforms along curves. II, Amer. J. Math. 98 (2) (1976), 395-403.
- [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501
- [SW] E. M. Stein and G. Weiss, Introduction to, Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.