On quasipositive elements in ordered Banach algebras

Gerd Herzog; Roland Lemmert

Studia Mathematica (1998)

  • Volume: 129, Issue: 1, page 59-65
  • ISSN: 0039-3223

Abstract

top
Let a real Banach algebra A with unit be ordered by an algebra cone K. We study the elements a ∈ A with exp(ta) ∈ K, t≥ 0.

How to cite

top

Herzog, Gerd, and Lemmert, Roland. "On quasipositive elements in ordered Banach algebras." Studia Mathematica 129.1 (1998): 59-65. <http://eudml.org/doc/216492>.

@article{Herzog1998,
abstract = {Let a real Banach algebra A with unit be ordered by an algebra cone K. We study the elements a ∈ A with exp(ta) ∈ K, t≥ 0.},
author = {Herzog, Gerd, Lemmert, Roland},
journal = {Studia Mathematica},
keywords = {real Banach algebra with unit; ordered by an algebra cone},
language = {eng},
number = {1},
pages = {59-65},
title = {On quasipositive elements in ordered Banach algebras},
url = {http://eudml.org/doc/216492},
volume = {129},
year = {1998},
}

TY - JOUR
AU - Herzog, Gerd
AU - Lemmert, Roland
TI - On quasipositive elements in ordered Banach algebras
JO - Studia Mathematica
PY - 1998
VL - 129
IS - 1
SP - 59
EP - 65
AB - Let a real Banach algebra A with unit be ordered by an algebra cone K. We study the elements a ∈ A with exp(ta) ∈ K, t≥ 0.
LA - eng
KW - real Banach algebra with unit; ordered by an algebra cone
UR - http://eudml.org/doc/216492
ER -

References

top
  1. [1] G. P. Barker, On matrices having an invariant cone, Czechoslovak Math. J. 22 (1972), 49-68. Zbl0238.15005
  2. [2] F. F. Bonsall, and J.Duncan, Complete Normed Algebras, Springer, 1973. Zbl0271.46039
  3. [3] H.-J. Krieger, Beiträge zur Theorie positiver Operatoren, Akademie-Verlag, Berlin, 1969. 
  4. [4] R. Loewy and H. Schneider, Positive operators on the n-dimensional ice cream cone, J. Math. Anal. Appl. 49 (1975), 375-392. Zbl0308.15011
  5. [5] H. Raubenheimer and D. Rode, Cones in Banach algebras, Indag. Math. 7 (1996), 489-502. 
  6. [6] R. Redheffer and W. Walter, Flow-invariant sets and differential inequalities in normed spaces, Appl. Anal. 5 (1975), 149-161. Zbl0353.34067
  7. [7] H. H. Schaefer, Topological Vector Spaces, Springer, 1980. 
  8. [8] P. Volkmann, Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157-164. Zbl0226.34058
  9. [9] P. Volkmann, Über die Invarianz konvexer Mengen und Differentialungleichungen in einem normierten Raume, Math. Ann. 203 (1973), 201-210. Zbl0251.34039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.