On the positivity of semigroups of operators
Roland Lemmert; Peter Volkmann
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 3, page 483-489
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLemmert, Roland, and Volkmann, Peter. "On the positivity of semigroups of operators." Commentationes Mathematicae Universitatis Carolinae 39.3 (1998): 483-489. <http://eudml.org/doc/248254>.
@article{Lemmert1998,
abstract = {In a Banach space $E$, let $U(t)$$\,(t>0)$ be a $C_0$-semigroup with generating operator $A$. For a cone $K\subseteq E$ with non-empty interior we show: $(\star )$ $U(t)[K]\subseteq K$$\,(t>0)$ holds if and only if $A$ is quasimonotone increasing with respect to $K$. On the other hand, if $A$ is not continuous, then there exists a regular cone $K\subseteq E$ such that $A$ is quasimonotone increasing, but $(\star )$ does not hold.},
author = {Lemmert, Roland, Volkmann, Peter},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semigroups of positive operators; quasimonotonicity; semigroups of positive operators; quasimonotonicity; quasimonotone increasing; -semigroup},
language = {eng},
number = {3},
pages = {483-489},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the positivity of semigroups of operators},
url = {http://eudml.org/doc/248254},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Lemmert, Roland
AU - Volkmann, Peter
TI - On the positivity of semigroups of operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 3
SP - 483
EP - 489
AB - In a Banach space $E$, let $U(t)$$\,(t>0)$ be a $C_0$-semigroup with generating operator $A$. For a cone $K\subseteq E$ with non-empty interior we show: $(\star )$ $U(t)[K]\subseteq K$$\,(t>0)$ holds if and only if $A$ is quasimonotone increasing with respect to $K$. On the other hand, if $A$ is not continuous, then there exists a regular cone $K\subseteq E$ such that $A$ is quasimonotone increasing, but $(\star )$ does not hold.
LA - eng
KW - semigroups of positive operators; quasimonotonicity; semigroups of positive operators; quasimonotonicity; quasimonotone increasing; -semigroup
UR - http://eudml.org/doc/248254
ER -
References
top- Arendt W., Generators of positive semigroups and resolvent positive operators, Habilitationsschrift, Univ. Tübingen, 1984. Zbl0566.47027MR0763347
- Arendt W., Grabosch A., Greiner G., Groh U., Lotz H.P., Moustakas U., Nagel R., Neubrander F., Schlotterbeck U., One-parameter semigroups of positive operators, Lecture Notes in Math., vol 1184, Springer, Berlin, 1986. MR0839450
- Borwein J.M., Tingley D.W., On supportless convex sets, Proc. Amer. Math. Soc. 94 (1985), 471-476. (1985) Zbl0605.46012MR0787897
- Fonf V.P., On supportless convex sets in incomplete normed spaces, Proc. Amer. Math. Soc. 120 (1994), 1173-1176. (1994) Zbl0804.46021MR1216811
- Herzog G., Lemmert R., On quasipositive elements in ordered Banach algebras, Studia Math. 129 (1998), 59-65. (1998) Zbl0908.46032MR1611855
- Krasnosel'skiĭM.A., Pravil'nye i vpolne pravil'nye konusy, Doklady Akad. Nauk SSSR 135 (1960), 255-257. (1960) MR0131157
- Krasnosel'skiĭM.A., Položitel'nye rešenija operatornyh uravneniĭ, Fizmatgiz, Moscow, 1962 (English translation 1964).
- Kreĭn M.G., Propriétés fondamentales des ensembles coniques normaux dans l'espace de Banach, Doklady Akad. Nauk SSSR 28 (1940), 13-17. (1940) Zbl0024.12202MR0004081
- Kreĭn S.G., Lineĭnye differencial'nye uravnenija v banahovom prostranstve, Nauka, Moscow, 1963 (English translation 1971). MR0374949
- Volkmann P., Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157-164. (1972) Zbl0226.34058MR0308547
- Volkmann P., Über die Invarianz konvexer Mengen und Differentialungleichungen in einem normierten Raume, Math. Ann. 203 (1973), 201-210. (1973) Zbl0251.34039MR0322305
- Volkmann P., Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in Banachräumen, Lecture Notes in Math., vol. 415, Springer, Berlin, 1974, pp.439-443. MR0432995
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.