On the positivity of semigroups of operators

Roland Lemmert; Peter Volkmann

Commentationes Mathematicae Universitatis Carolinae (1998)

  • Volume: 39, Issue: 3, page 483-489
  • ISSN: 0010-2628

Abstract

top
In a Banach space E , let U ( t ) ( t > 0 ) be a C 0 -semigroup with generating operator A . For a cone K E with non-empty interior we show: ( )     U ( t ) [ K ] K ( t > 0 ) holds if and only if A is quasimonotone increasing with respect to K . On the other hand, if A is not continuous, then there exists a regular cone K E such that A is quasimonotone increasing, but ( ) does not hold.

How to cite

top

Lemmert, Roland, and Volkmann, Peter. "On the positivity of semigroups of operators." Commentationes Mathematicae Universitatis Carolinae 39.3 (1998): 483-489. <http://eudml.org/doc/248254>.

@article{Lemmert1998,
abstract = {In a Banach space $E$, let $U(t)$$\,(t>0)$ be a $C_0$-semigroup with generating operator $A$. For a cone $K\subseteq E$ with non-empty interior we show: $(\star )$    $U(t)[K]\subseteq K$$\,(t>0)$ holds if and only if $A$ is quasimonotone increasing with respect to $K$. On the other hand, if $A$ is not continuous, then there exists a regular cone $K\subseteq E$ such that $A$ is quasimonotone increasing, but $(\star )$ does not hold.},
author = {Lemmert, Roland, Volkmann, Peter},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semigroups of positive operators; quasimonotonicity; semigroups of positive operators; quasimonotonicity; quasimonotone increasing; -semigroup},
language = {eng},
number = {3},
pages = {483-489},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the positivity of semigroups of operators},
url = {http://eudml.org/doc/248254},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Lemmert, Roland
AU - Volkmann, Peter
TI - On the positivity of semigroups of operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 3
SP - 483
EP - 489
AB - In a Banach space $E$, let $U(t)$$\,(t>0)$ be a $C_0$-semigroup with generating operator $A$. For a cone $K\subseteq E$ with non-empty interior we show: $(\star )$    $U(t)[K]\subseteq K$$\,(t>0)$ holds if and only if $A$ is quasimonotone increasing with respect to $K$. On the other hand, if $A$ is not continuous, then there exists a regular cone $K\subseteq E$ such that $A$ is quasimonotone increasing, but $(\star )$ does not hold.
LA - eng
KW - semigroups of positive operators; quasimonotonicity; semigroups of positive operators; quasimonotonicity; quasimonotone increasing; -semigroup
UR - http://eudml.org/doc/248254
ER -

References

top
  1. Arendt W., Generators of positive semigroups and resolvent positive operators, Habilitationsschrift, Univ. Tübingen, 1984. Zbl0566.47027MR0763347
  2. Arendt W., Grabosch A., Greiner G., Groh U., Lotz H.P., Moustakas U., Nagel R., Neubrander F., Schlotterbeck U., One-parameter semigroups of positive operators, Lecture Notes in Math., vol 1184, Springer, Berlin, 1986. MR0839450
  3. Borwein J.M., Tingley D.W., On supportless convex sets, Proc. Amer. Math. Soc. 94 (1985), 471-476. (1985) Zbl0605.46012MR0787897
  4. Fonf V.P., On supportless convex sets in incomplete normed spaces, Proc. Amer. Math. Soc. 120 (1994), 1173-1176. (1994) Zbl0804.46021MR1216811
  5. Herzog G., Lemmert R., On quasipositive elements in ordered Banach algebras, Studia Math. 129 (1998), 59-65. (1998) Zbl0908.46032MR1611855
  6. Krasnosel'skiĭM.A., Pravil'nye i vpolne pravil'nye konusy, Doklady Akad. Nauk SSSR 135 (1960), 255-257. (1960) MR0131157
  7. Krasnosel'skiĭM.A., Položitel'nye rešenija operatornyh uravneniĭ, Fizmatgiz, Moscow, 1962 (English translation 1964). 
  8. Kreĭn M.G., Propriétés fondamentales des ensembles coniques normaux dans l'espace de Banach, Doklady Akad. Nauk SSSR 28 (1940), 13-17. (1940) Zbl0024.12202MR0004081
  9. Kreĭn S.G., Lineĭnye differencial'nye uravnenija v banahovom prostranstve, Nauka, Moscow, 1963 (English translation 1971). MR0374949
  10. Volkmann P., Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157-164. (1972) Zbl0226.34058MR0308547
  11. Volkmann P., Über die Invarianz konvexer Mengen und Differentialungleichungen in einem normierten Raume, Math. Ann. 203 (1973), 201-210. (1973) Zbl0251.34039MR0322305
  12. Volkmann P., Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in Banachräumen, Lecture Notes in Math., vol. 415, Springer, Berlin, 1974, pp.439-443. MR0432995

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.