On extremal and perfect σ-algebras for flows

B. Kamiński; Z. Kowalski

Studia Mathematica (1998)

  • Volume: 129, Issue: 2, page 179-183
  • ISSN: 0039-3223

Abstract

top
It is shown that there exists a flow on a Lebesgue space with finite entropy and an extremal σ-algebra of it which is not perfect.

How to cite

top

Kamiński, B., and Kowalski, Z.. "On extremal and perfect σ-algebras for flows." Studia Mathematica 129.2 (1998): 179-183. <http://eudml.org/doc/216497>.

@article{Kamiński1998,
abstract = {It is shown that there exists a flow on a Lebesgue space with finite entropy and an extremal σ-algebra of it which is not perfect.},
author = {Kamiński, B., Kowalski, Z.},
journal = {Studia Mathematica},
keywords = {special flow; entropy; extremal -algebra; measurable flow action; Pinsker -algebra},
language = {eng},
number = {2},
pages = {179-183},
title = {On extremal and perfect σ-algebras for flows},
url = {http://eudml.org/doc/216497},
volume = {129},
year = {1998},
}

TY - JOUR
AU - Kamiński, B.
AU - Kowalski, Z.
TI - On extremal and perfect σ-algebras for flows
JO - Studia Mathematica
PY - 1998
VL - 129
IS - 2
SP - 179
EP - 183
AB - It is shown that there exists a flow on a Lebesgue space with finite entropy and an extremal σ-algebra of it which is not perfect.
LA - eng
KW - special flow; entropy; extremal -algebra; measurable flow action; Pinsker -algebra
UR - http://eudml.org/doc/216497
ER -

References

top
  1. [1] F. Blanchard, Partitions extrêmales des flots d'entropie infinie, Z. Wahrsch. Verw. Gebiete 36 (1976), 129-136. Zbl0319.28012
  2. [2] F. Blanchard, K-flots et théorème de renouvellement, ibid., 345-358. Zbl0328.60036
  3. [3] M. Binkowska and B. Kamiński, Entropy increase for d -actions on a Lebesgue space, Israel J. Math. 88 (1994), 307-318. Zbl0826.28008
  4. [4] S. Goldstein and O. Penrose, A non-equilibrium entropy for dynamical systems, J. Statist. Phys. 24 (1981), 325-343. Zbl0516.70021
  5. [5] B. M. Gurevich, Some existence conditions for K-decompositions for special flows, Trans. Moscow Math. Soc. 17 (1967), 99-126. Zbl0207.48502
  6. [6] B. M. Gurevich, Perfect partitions for ergodic flows, Funktsional. Anal. i Prilozhen. 11 (3) (1977), 20-23 (in Russian). 
  7. [7] B. Kamiński, The theory of invariant partitions for d -actions, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 349-362. Zbl0479.28016
  8. [8] B. Kamiński, Z. S. Kowalski and P. Liardet, On extremal and perfect σ-algebras for d -actions, Studia Math. 124 (1997), 173-178. Zbl0882.28015
  9. [9] V. A. Rokhlin, Lectures on the entropy theory of measure-preserving transformations, Uspekhi Mat. Nauk 22 (5) (1967), 3-56 (in Russian). 
  10. [10] T. Shimano, An invariant of systems in the ergodic theory, Tôhoku Math. J. 30 (1978), 337-350. Zbl0394.28009
  11. [11] T. Shimano, Multiplicity of helices of a special flow, ibid. 31 (1979), 49-55. Zbl0412.28011
  12. [12] T. Shimano, Multiplicity of helices for a regularly increasing sequence of σ-fields, ibid. 36 (1984), 141-148. Zbl0551.28021
  13. [13] T. Shimano, On helices for Kolmogorov system with two indices, Math. J. Toyama Univ. 14 (1991), 213-226. Zbl0768.60031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.