# On extremal and perfect σ-algebras for flows

Studia Mathematica (1998)

- Volume: 129, Issue: 2, page 179-183
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topKamiński, B., and Kowalski, Z.. "On extremal and perfect σ-algebras for flows." Studia Mathematica 129.2 (1998): 179-183. <http://eudml.org/doc/216497>.

@article{Kamiński1998,

abstract = {It is shown that there exists a flow on a Lebesgue space with finite entropy and an extremal σ-algebra of it which is not perfect.},

author = {Kamiński, B., Kowalski, Z.},

journal = {Studia Mathematica},

keywords = {special flow; entropy; extremal -algebra; measurable flow action; Pinsker -algebra},

language = {eng},

number = {2},

pages = {179-183},

title = {On extremal and perfect σ-algebras for flows},

url = {http://eudml.org/doc/216497},

volume = {129},

year = {1998},

}

TY - JOUR

AU - Kamiński, B.

AU - Kowalski, Z.

TI - On extremal and perfect σ-algebras for flows

JO - Studia Mathematica

PY - 1998

VL - 129

IS - 2

SP - 179

EP - 183

AB - It is shown that there exists a flow on a Lebesgue space with finite entropy and an extremal σ-algebra of it which is not perfect.

LA - eng

KW - special flow; entropy; extremal -algebra; measurable flow action; Pinsker -algebra

UR - http://eudml.org/doc/216497

ER -

## References

top- [1] F. Blanchard, Partitions extrêmales des flots d'entropie infinie, Z. Wahrsch. Verw. Gebiete 36 (1976), 129-136. Zbl0319.28012
- [2] F. Blanchard, K-flots et théorème de renouvellement, ibid., 345-358. Zbl0328.60036
- [3] M. Binkowska and B. Kamiński, Entropy increase for ${\mathbb{Z}}^{d}$-actions on a Lebesgue space, Israel J. Math. 88 (1994), 307-318. Zbl0826.28008
- [4] S. Goldstein and O. Penrose, A non-equilibrium entropy for dynamical systems, J. Statist. Phys. 24 (1981), 325-343. Zbl0516.70021
- [5] B. M. Gurevich, Some existence conditions for K-decompositions for special flows, Trans. Moscow Math. Soc. 17 (1967), 99-126. Zbl0207.48502
- [6] B. M. Gurevich, Perfect partitions for ergodic flows, Funktsional. Anal. i Prilozhen. 11 (3) (1977), 20-23 (in Russian).
- [7] B. Kamiński, The theory of invariant partitions for ${\mathbb{Z}}^{d}$-actions, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 349-362. Zbl0479.28016
- [8] B. Kamiński, Z. S. Kowalski and P. Liardet, On extremal and perfect σ-algebras for ${\mathbb{Z}}^{d}$-actions, Studia Math. 124 (1997), 173-178. Zbl0882.28015
- [9] V. A. Rokhlin, Lectures on the entropy theory of measure-preserving transformations, Uspekhi Mat. Nauk 22 (5) (1967), 3-56 (in Russian).
- [10] T. Shimano, An invariant of systems in the ergodic theory, Tôhoku Math. J. 30 (1978), 337-350. Zbl0394.28009
- [11] T. Shimano, Multiplicity of helices of a special flow, ibid. 31 (1979), 49-55. Zbl0412.28011
- [12] T. Shimano, Multiplicity of helices for a regularly increasing sequence of σ-fields, ibid. 36 (1984), 141-148. Zbl0551.28021
- [13] T. Shimano, On helices for Kolmogorov system with two indices, Math. J. Toyama Univ. 14 (1991), 213-226. Zbl0768.60031

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.